
  

 
Using sets of combs to control pitch estimation errors 

 
Jean-Sylvain Liénard, Claude Barras and François Signol 

LIMSI-CNRS, BP 133, 91403 Orsay Cedex, France 

[jean-sylvain.lienard,claude.barras,francois.signol]@limsi.fr 

1. Introduction 

Despite some recent improvements [1,2,3,4], pitch estimation of speech signals remains 
an error-prone process. The main sources of errors are i) the voiced-unvoiced decision 
and ii) the selection of harmonics or sub-harmonics instead of the fundamental 
frequency, yielding what is named the gross errors (i.e. estimation error > 20%). The 
problem is still more complex if one considers that several voices may be mixed in the 
signal [5].  

In the present study we focus on the gross errors problem in voiced frames of short 
duration, in the multipitch perspective. Pitch is estimated in the spectral dimension by 
use of a spectral comb [1]. We define the Pitch Function PF as the response of a given 
pitch estimator in a given pitch interval. This notion embodies the notions of Period 
Histogram and Product Spectrum [6], as well as what is called "pitch strength" or "pitch 
saliency" by some authors. In the monopitch case, each peak of this function can be 
labeled by a couple of positive integers p and q, named respectively the harmonic and 
sub-harmonic indices. For the pitch estimation to be correct one has to select the peak 
(1,1). However this peak is not always the highest one, even in the monopitch case, and 
this is the main cause of the gross errors. Our efforts aim at increasing the prominence of 
the main peak by reducing the magnitude of the secondary peaks. To do so we define 
some particular combs, with missing or negative teeth, which produce particular pitch 
functions called Suppression Functions, each one addressing a given peaks family. They 
are combined into the final PF, in which the main peak gets reinforced, thus reducing the 
risk of gross errors. We present two ways of combining the Suppression Functions, the 
Alternate Comb and the Suppression Comb.  

2. Infinite Uniform Comb 

The Infinite Uniform Comb IUC(Fc) is made of an infinite number of unitary teeth 
regularly spaced in frequency. We call comb frequency Fc the frequency of its first tooth. 
The Pitch Function value for Fc is obtained by the scalar product of the comb IUC(Fc) 
with the module |S(F)| of the sound spectrum.  

Although this comb is theoretically infinite, the scalar product is finite because the 
spectrum is bounded in frequency, as for any physical sound of limited energy. If 
{Bmin, Bmax} is the frequency band of the sound, and {Fcmin, Fcmax} the frequency 
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range in which the estimator computes the PF, a finite comb gives the same PF as an 
infinite comb if it has at least nteeth:      

nteeth >=  Bmax/Fcmin 

2.1 Functioning 

The functioning of the IUC has been described in [7]. It is briefly illustrated in Fig. 1.  

When the comb frequency Fc is equal to the fundamental frequency F0 of the sound 
(here a schematic sound made of a series of spectral peaks) each tooth of the comb 
matches a spectral comb. Thus the scalar product is maximum, yielding a peak of the PF. 
When Fc equals a multiple p of F0 it also produces a peak of the PF, but only one peak 
out of p matches a tooth; thus the scalar product gets p times smaller. When Fc equals a 
sub-multiple q of F0 all of the spectral peaks are matched by some teeth. Because the 
comb extends up to Bmax, the scalar product takes the same maximum value as in the 
Fc=F0 case. More generally, the PF peaks appear when the following relation is 
observed: 

Fc/F0 = p/q p, q, integers >0 

2.2 The peaks of the Pitch Function  

Let us consider a physical sound made of a series of pulses at F0=250 Hz, Hanning 
windowed, of duration 50 ms. Fig. 2 shows the PF obtained by use of an IUC, 
normalized to the height of the main peak. Some of the numerous peaks obtained are 
identified in terms of the harmonic and sub-harmonic indices p and q. In the following 
we shall consider that p and q are the integer terms of the irreducible fraction Fc/F0. The 
peak (4,2) does not exist; it is just a redundant notation for the peak (2,1). 

As mentioned above the sub-harmonic peaks (1,q) have the same maximum 
magnitude A1,1 as the main peak (1,1). However, the magnitude of the harmonic peaks 

 
Fig 1. Functioning of the Infinite Uniform Comb on a 
schematic spectrum F0. The IUC is represented for 3 

values of its frequency Fc:  Fc=F0,  Fc=F0/2 and Fc=2F0 



  

(p,1) decreases theoretically according to the inverse of their index p, because only one 
tooth out of p matches a spectral peak:    

Ap,1 =  A1,1 /p 
Besides the harmonic (h) and sub-harmonic peaks (sh) one observes secondary (or 

fractional) peaks, the frequencies of which are given by: 
Fp,q = (p/q) F1,1 

Their magnitude may vary with the spectral composition of the sound, but 
theoretically they tend toward the values given by: 

Ap,q =  A1,q /p 

In the case of the IUC the magnitude A1,q of the sub-harmonic peaks (1,q) equals 
that of the main peak, thus:  

Ap,q =  A1,1 /p 
In other words, the relative magnitude of a fractional peak (p,q) is an inverse 

function of the harmonic index p and does not depend on the sub-harmonic index q. 
In Fig. 2, the magnitude of the peak (3,2) at 375 Hz should be close to A1,1/3 but 

the observed value is lower, due to the decreasing spectral envelope of the series of 
pulses used in our example sound.   

 
The fact that the sub-harmonic peaks have the same value as the main peak makes 

the use of the IUC problematic for the estimation of F0, even in the monopitch case. 
Before examining some possible solutions we have to mention the role of the signal 
windowing in the PF shape. 

2.3 Signal duration and windowing 

When the signal duration gets shorter, the spectral peaks get thicker. For a 100 ms 
Hanning window, for instance, the width of a spectral peak at half height is about 20 Hz. 
It becomes about 40 Hz when the window gets shortened to 50 ms. The peaks of the PF, 
as they result from the accumulation of several spectral peaks, evolve in the same way. 

 
 
Fig. 2  Pitch Function, Infinite Uniform Comb applied 
to a 50 ms Hanning-windowed 250 Hz series of pulses 
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This widening alters the resolution of the pitch estimation, especially in the low Fc range.  
Another effect of this widening appears when Fc gets very low, so that several 

teeth of the comb can take place in the width of a single spectral peak. This produces the 
decreasing hyperbolic component observed in the low range of the PF (Fig. 2).  The 
resulting masking effect may be tolerated to some extent if one is more interested in the 
peaks of the PF than in its valleys. In the example illustrated above the PF peaks remain 
unmasked for Fc>40 Hz, which constitutes the real lower bound of the estimator's 
frequency range. Several solutions may be implemented to reduce this effect, such as 
using a better window or modeling the spectral peaks in order to diminish their apparent 
width. 

3. Control of the sub-harmonic decrease 

In order for the comb to function as a pitch estimator it is mandatory to reduce the 
magnitude of the sub-harmonic peaks (1,q). Two techniques, among others, have been 
used in the past to achieve this task.  

3.1 Limiting the number of teeth 

Limiting the number of teeth to a fixed small number Nt<nteeth practically ensures the 
magnitude of the main peak A1,1 to be the real maximum of the PF, in the monopitch 
case. For Fc=F0 each tooth matches a spectral peak, so that A1,1 is proportional to Nt. For 
Fc=F0/2 only the Nt/2 even teeth match spectral peaks. The spectral peaks located above 
Nt/2 do not contribute any more to A1,2, which yields A1,2<=A1,1. The "equal" case may 
occur if the part of the spectrum matched by the teeth located between Nt/2 and Nt has 
zero magnitude. The same line of reasoning holds for the other sub-harmonic peaks. 
Setting the number of teeth to a value comprised between 5 and 10 yields a progressive 
decrease of the sub-harmonic peaks, sufficient in practice to promote (1,1) as the main 
peak of the PF. 

This technique implies a loss of information because the spectral peaks lying above 
the last tooth are not taken into account in the periodicity estimation. This loss is not 
critically important for speech because i) those high-frequency peaks convey less energy 
than the low ones and ii) they are to some extent packed down by the jitter.  

3.2 Decreasing the teeth magnitudes 

Another way to ensure the decrease of the sub-harmonic peaks is to reduce the 
magnitude of the teeth as a function of their rank r. An exponential decrease in r-k is 
often chosen. This technique is just a variation of the previous one in that it favors the 
effect of the lower teeth.  However its action is smoother, as the teeth contribution to the 
PF decreases with their rank. The counterpart is that it may be more sensitive than the 
previous one to any alteration of  the energy carried by the fundamental (telephone 
speech, or partial masking by a low frequency noise). 

The exponent k is often empirically given the value 0.5. This produces a decrease 

 

 



  

of  √2 of  the peak (1,2), and a similar increase of the peak (2,1), compared to the values 
they had by use of the IUC. Thus the two peaks presenting the maximum risk of gross 
error (sub-octave and octave errors) get the same height. Both techniques can be used 

together, as illustrated in fig 3. The comb used has a limited number of teeth (10 teeth), 
decreasing in √r. The goal of reducing the sub-harmonic peaks is attained, but the 
rejection parasitic peaks remains poor and the risk of octave or sub-octave errors is still 
high, especially in the multipitch case.  

4. Control of the gross errors by use of irregular combs 

In this section we present a novel approach of the control of the gross errors, based on 
the use of irregular combs. The particular Pitch Functions obtained with those combs are 
called Suppression Functions. 

4.1 Missing Teeth Comb and sub-harmonic suppression 

Let us consider an Infinite Uniform Comb, from which the even-numbered teeth of rank 

        
 
Fig. 4 Missing Teeth Comb of order 2 (odd comb M1,2),  
positioned at Fc=F0 and Fc=F0/2. This comb cancels the 
sub-harmonic peaks (p,2k),    p,k integers >0     p<2k 

 
 
Fig 3. Pitch Function of a 10-teeth comb decreasing in √r. 

Same sound as in Fig. 2 

(1,1
) 

(2,1
) 

(1,3
) 

(4,3
) 

(2,3
) (3,2

) 

(1,2
) 



  

2k have been removed (odd comb, Fig. 4). The PF generated in the presence of a 
harmonic spectrum of fundamental F0 exhibits a minimal response (close to zero) for the 
peaks (p,2k):  

Fc/F0 = p/2k              p, k  integers >0         p<2k 
 

Figure 5 shows that the peaks (1,2), (1,4), (3,4), (1,6), (5,6)... have been practically 
cancelled, to the extent that they were distinct in the initial PF (compare with Fig. 2).  
Let us denote (sh2) this order 2 sub-harmonic peaks family. The corresponding PF, after 
processing of the spectrum |S|, is called order 2 sub-harmonic Suppression Function and 
denoted SH2. 

Similarly, a Missing Teeth Comb of order 3 is defined by removing the teeth of 
rank 3k. This comb cancels the peaks: 

 
(p,3k)       p, k integers >0      p<3k 

 
Those peaks (1,3), (1,6), (5,6), (1,9)... constitute the order 3 sub-harmonic family 

denoted (sh3). The PF obtained with the spectrum |S| is the Suppression Function SH3.  
Continuing with the orders greater than 3, we have to observe that the (sh4) and 

(sh8) families are totally included in the (sh2) family. Similarly, the (sh6) family is 
included in both (sh2) and (sh3) families. Thus the corresponding suppression functions 
are redundant. Only the families of prime order are necessary to cancel all the error-
prone sub-harmonic peaks.  

If Fcmax has been set at 600 Hz and Fcmin at 75 Hz, then it is useless to cancel any 
peak beyond order 8. As we only need the prime orders, computing SH2, SH3, SH5 and 
SH7 is sufficient. We note that all those functions let the other peaks, including (1,1), at 
their proper location, while reducing their absolute magnitude in the proportion of the 
missing teeth. 

 
 
Fig 5. Suppression function SH2 obtained by processing 
the 250 Hz sound with the odd comb. Peaks (1,2), (1,4), 

(3,4)... at 125, 62.5, 187.5 Hz have been cancelled 
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4.2 Alternate Teeth Comb and harmonic suppression 

In order to control the harmonic peaks (p,1) an approach similar to the previous one 
consists in placing some negative teeth between the regular teeth of the Infinite Uniform 
Comb.  

Let us consider the order 2 (Fig. 6). The positive teeth are located at frequencies  
kFc (k integer >0). When the IUC is positioned at the octave, Fc=2F0, it produces the 
parasitic peak (2,1) with a magnitude lower than the magnitude A1,1 of the main peak. To 
eliminate it one has to subtract from the PF a part of A1,1.  This may produce a negative 
value in place of the peak (2,1). A thresholding strategy will be necessary to use this new 
suppression function H2 in a multiplicative combination to get the final PF. 

 

 
Actually the family (h2) is not limited to the peaks (2k,1), but includes also some 

fractional peaks such as (6,5), which is actually the 6th multiple of the 5th sub-multiple 
of F0 (Fig.7). In symbolic terms the (h2) family may be denoted: 

 
Fig 7. Suppression function H2 obtained by processing a 

periodic spectrum with the order 2 Alternate Teeth 
Comb. The function has been normalized to 1 
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Fig. 6   Alternate Teeth Comb of order 2 A2,1, positioned 

at Fc=F0 and Fc=2F0. This comb cancels the harmonic 
and fractionary peaks (2k,q) with  q<2k  



  

 (h2) = (2k,q)   q<2k     k, q integers >0  
 
At this point we have to mention that subtracting the middle part of the interpeak 

parts of the spectrum to improve the pitch estimation has been investigated with success 
in [3] and [4], by following approaches different from ours.  

 
 
At order 3 the Alternate Teeth Comb comprises 2 intermediary negative teeth, 

equally spaced between the regular (positive) teeth.  This comb cancels the (h3) peaks 
family defined by:  

(h3) = (3k,q)        k, q integers >0       q<3k 
Among the members of this family, one finds peaks (3,1), (6,1)... (3,2), (9,2)... 

(6,1), (6,5)... (9,1), (9,2), (9,4)... 
As before, we note that some harmonic suppression families are redundant: (h4), 

(h6) and (h8) are included in (h2), (h6) is included in (h2) and (h3) etc. In other terms 
the prime order families (h2), (h3), (h5) and (h7) are sufficient in order to cancel all the 
harmonic and fractional peaks appearing in a {Fcmin, Fcmax} interval less than 11 times 
Fcmin. 

  

4.3 Alternate Comb 

The Pitch Estimation Algorithm presented in [7] is an implementation of two of the 
approaches described above. The reduction of the sub-harmonic peaks is done by the 
limitation of the number of teeth and their exponential decrease, while the reduction of 
the harmonic peaks is done by using an additive combination of two Alternate Teeth 
Combs, of orders 2 and 3. Two coefficients a2 and a3 were used to control their part on 
the harmonic reduction process, and another coefficient ad (the exponent of the teeth 
decrease) was used to control the decrease of the teeth magnitude. An experimental work 
yielded the optimal values of a2, a3 and ad. After evaluation on two classical pitch 
databases and comparison with other PEAs, the performance of the Alternate Comb 
appeared to be at the level of the best published results. 
 

4.4   Suppresssion Comb 

The Suppression Comb aims at consistently implementing the harmonic and sub-
harmonic suppression functions described in the preceding sections. Each one of those 
functions preserves the main peak and controls some families of parasitic peaks. Thus a 
multiplicative combination - completed by the use of positive thresholds to avoid the 
negative parts -  looks more appropriate than the  additive one implemented in the 
Alternate Comb.  

A first implementation consists in using as many irregular combs as the number of 
suppression functions needed. If  we need to cover a 10 times pitch interval we need to 
achieve the suppression up to the order 10, and a set of 8 combs is convenient: 4 Missing 



  

Teeth Combs to get the functions SH2, SH3, SH5, SH7, and 4 Alternate Teeth Combs to 
get H2, H3, H5 and H7. This method requests some amount of computing but does not 
bother - or only marginally - with the problem of the low frequency hyperbolic increase 
of the PFs.  

Another implementation is based on the fact that the suppression functions can be 
computed from the PFs of the Infinite Uniform Comb, according to the following 
formulae. PF designates the Pitch Function of the IUC, i designates the order of the 
reconstructed irregular comb. The coefficients of the H functions ensure that the 
Alternate Teeth combs are centered (null mean value):  

 
 

 

 
This method is faster than the first one, but it implies the computation of the PF at 

very low frequencies (Fcmin/7 for the function H7), and thus encounters the problem 
mentioned above.  

In the following examples the final PF, obtained by multiplying the 8 suppression 
functions, was weighted in frequency by √fc , in order to get a supplementary gain on 
the SH peaks such as the one evoked in section 3.2.   

 

Figure 8 represents the final PF of the same sound used throughout the paper. 
Comparing it to figures 2 and 5 gives an idea of the efficiency of the whole suppression 
process. The parasitic peaks (1,2) and (2,1) are now rejected at some -20 dB below the 
main peak instead of -3dB (cf Figure 3). The consequence is that the risk of gross F0 
errors is highly reduced. 

 
 
 

 
Fig 8. Final PF after H and SH suppression  

and √f weighting 



  

 
 
 
 
 
 
  Figure 9 shows the final PF obtained with the mixture of same sound and an 
equally intense white noise. The consequence is an increase of the sh peaks (1,2) and 
(1,3) and a decrease of the h peak (2,1). Those parasitic peaks remain small and do not 
prevent the main peak to emerge. 
 

 
Figure 10 represents the final PF obtained from the mixture of two vocalic sounds 

uttered by a single male voice. Both sounds were extracted from continuously pitch-
varying and spectrum-varying sequences. The main peak of the most acute sound is less 
prominent, but it appears nevertheless in second position. 

 
 

 
Fig 9. Same as in fig 8, but the sound has been mixed 

with white noise of same intensity 

 
Fig 10. Mixture of  two vowels at 94 and 134 Hz from 

the same male speaker 



  

 
 
 
 
 
 
Finally, figure 11 shows a mixture of two artificial vowels of same intensity, 

whose F0s are exactly one octave apart. The correct peaks emerge clearly, which can be 
seen as a positive feature for a harmonic suppression algorithm. 

 5. Conclusion 

The main goal of this work was to improve the ability of the spectral comb methods to 
provide an error-free pitch estimator, in order to be usable in both mono and multipitch 
estimation. We proposed to use irregular combs, either with some missing teeth or with 
alternate negative teeth, which have the property of canceling some families of 
erroneous solutions. An evaluation of this approach in the mono and multipitch cases is 
in progress [8]. 

 
Fig 11. Mixture of two artificial vowels of same intensity, 

with F0s exactly one octave apart (80 and 160 Hz) 
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