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Abstract. A method of error-tolerant lookup in a finite-state lexicon is de-
scribed, as well as its application to automatic spelling correction. We compare 
our method to the algorithm by K. Oflazer ([14]). While Oflazer�s algorithm 
searches for all possible corrections of a misspelled word that are within a given 
similarity threshold, our approach is to retain only the most similar corrections 
(nearest neighbours), reducing dynamically the search space in the lexicon, and 
to reach the first correction as soon as possible. 

1   Introduction 

 
K. Oflazer ([14]) proposed an efficient and elegant algorithm of error-tolerant look-up 
in a finite-state dictionary, and its application to morphological analysis and spelling 
correction of simple words. For a given input string that is not contained in the dic-
tionary the algorithm searches for all possible corrections that are within the given 
distance threshold. We present a similar method in which only those candidates are 
retained that have the minimal distance from the input word, and the first solution can 
be obtained rapidly. 

2   Related Work 

Many aspects of a natural language can be treated through finite-state machines in 
their classical ([16], [7]) and extended versions ([8]), due to their time and space effi-
ciency obtained by determinisation and minimisation  ([19], [13], [2]).  

Automatic spelling correction is one of the oldest applications in the field of natural 
language processing, and it has a very rich bibliography, a good review of which is 
presented in [9]. The author divides the existing approaches into three classes: non-
word error detection, isolated-word error correction, and context-dependent word 
correction. Many problems faced by the methods of the first class in the early research 
(e.g. [12]), due to the size of the lexicon and its access time, found a solution in the 



finite-state model of the lexicon. One of the main remaining problems, the recognition 
of spelling errors resulting in valid words (e.g. from → form) requires approaches of 
the third class, based most of the time on a syntactic and/or stochastic analysis of a 
local context of words supposed to be erroneous (e.g. [17], [5]). 

In the second type of approach, i.e. isolated error correction, errors are most often 
of typing origin, of phonetic origin (e.g. [10]), or both. This paper addresses only 
typing errors. They are traditionally interpreted as resulting from one or more editing 
operations on letters: insertions, deletions, replacements and inversions of adjacent 
letters ([3]). Their correction is related to the theoretical problem of approximate 
string matching ([6]), in which the distance between two strings is the minimum cost 
of all sequences of editing operations that transform one string into another. Different 
sequences of editing operations may be allowed and different cost functions may be 
assigned to these editing operations. With the distance measure called edit distance 
proposed in [18] and [11], editing operations may be assigned arbitrary costs, and they 
may act on arbitrary positions in the string in arbitrary order  (e.g. ca can be obtained 
from abc by two operations: deletion of b, inversion of a and c). However, an efficient 
algorithm for edit distance calculation exists only if 2WS ≥ WI + WD, where WS, WI, 
WD are costs assigned to inversion, insertion and deletion operations, respectively.  

In [4] this distance measure is modified and renamed to error distance by assigning 
cost 1 to each editing operation and by admitting that errors occur in linear order from 
left to right so that a later operation may not cancel the effect of an earlier operation. 
Thus, inversions occur only between letters that are adjacent in the original word and 
remain adjacent in the erroneous word (e.g. the error distance between abc and ca is 
3). Due to the equal cost of each editing operation, the error distance becomes a met-
ric, i.e. a function satisfying four properties: non-negative values, reflexivity, symme-
try, and triangular inequality.  

The computational solution for the (editing or error) distance calculation, belonging 
to the class of dynamic programming algorithms, is based on a matrix H[0:n,0:m], 
where n and m are the lengths of the two strings to be compared, and H[i,j]contains 
the distance between the prefixes of lengths i and j of the two strings. The calculation 
is particularly efficient for the error distance matrix, since the value of the element 
H[i+1,j+1] depends only on the values of the elements H [i-1,j-1], H [i,j], H [i+1,j], 
and H [i,j+1]. Oflazer ([14]) made the calculation of the error distance matrix even 
more efficient in that he applied it to the finite-state representation of the lexicon. 
Thus, when a word is searched for in the lexicon, a part of the matrix is calculated 
only once for all lexicon words that have the same common prefix. 

3   Spelling Correction Problem 

The distance measure between two strings admitted in this paper, as well as in 
Oflazer�s one, is the error distance of [4] (although Oflazer still uses the notion of edit 
distance), as described in the previous section.  There is no theoretical distance limit 
between an erroneous word and its right correction. Hence a trade-off is necessary 
between three factors: the search time efficiency (in the case of our algorithm and of 



Oflazer�s one it corresponds to the size of the section of the automaton that is to be 
explored), the length of the resulting correction candidate list (the user may be unwill-
ing to consult a long list), and the chance that the intended word be on that list. Thus, 
two of the possible spelling correction problem definitions are: 
- Finding all valid words which are no more distant from the input word than a given 

threshold. 
- Finding the nearest-neighbours, i.e. the valid words with the minimal distance from 

the input word (the minimal distance possibly being no bigger than a given thresh-
old). 

Note that none of the two approaches guarantees that the right correction will be 
found. The first approach is more often admitted (e.g. [4], [14]) since the right correc-
tion candidate for a misspelled word may not be its nearest neighbour. In our opinion, 
the second approach is preferable for many applications for three reasons: statistical 
studies show that words with multiple errors are rare (0.17% till 1.99% of unknown 
words in a corpus, with [15]), users are easily discouraged by long lists of correction 
candidates, and the search time grows exponentially with the admitted distance 
threshold. Therefore, the tolerant lookup algorithm we propose finds only the nearest 
neighbours and concentrates on reaching the first solution (which often is the right 
one) as soon as possible. 

4   Example 

The interpretation of a spelling error can be ambiguous. For instance, the erroneous 
English word *aply has some one-operation corrections: apply (omission of p), paly 
(inversion of p and a), ply (insertion of a), some 2 two-operation corrections: ape 
(replacement of e by l, insertion of y), apple (omission of p, replacement of e by y), 
pale (inversion of p and a, replacement of e by y), some three-operation corrections: 
apples (omission of p and s, replacement of e by y), pales (inversion of p and a, re-
placement of e by y, omission of s), etc. 

We will show how the nearest neighbours with threshold 2 (in our example these 
are the one-operation corrections) can be found by an error-tolerant look-up in a de-
terministic finite-state lexicon. Let us consider a small extract of English lexicon of 
simple words, containing some possible corrections of *aply (Fig. 1). The terminal 
states are represented by double circles. We say that state w is reachable from state v if 
there is a transition leading from v to w. The algorithm follows at first the standard 
look-up procedure to find the longest correct prefix. It begins in the initial state num-
ber 1. Parsing from left to right of aply brings us to a non-terminal state 4, where read-
ing the input letter l is not possible. Since the automaton is a deterministic one, no 
backtracking is necessary to be sure that the parsed sequence is not contained in the 
lexicon. That is where we start the error-tolerant look-up procedure searching for 
similar words through admission of any of the 4 elementary operations at any of the 5 
possible positions in the erroneous word: 

a p l y 
1 2 3 4 5 



At word position 3, where the standard input blocked, we can make the following 
suppositions: 
•  Letter l has been wrongly inserted. We omit l and try to recognize suffix –y start-

ing from the current state 4. That is not possible, so we have to make a second 
supposition about a possible error. Apart from the wrong insertion of l, we may 
simultaneously have: 

 - Wrong insertion of y. We try to recognize the empty suffix starting from the 
current state 4. That is not possible since this state is not a terminal one. No 
more supposition about a possible error is allowed since we reached the admit-
ted threshold 2. 

 - Omission of the correct letter before y. We try to recognize suffix –y starting 
from all states reachable from state 4. That is not possible without any further 
error admission. 

 - Replacement of the correct letter by y. We consider all transitions leading from 
state 4 to a final state. There is one such transition: (4,e,9). Thus, we get the 
first two-operation correction candidate ape with the error distance 2. 

•  Letters l and y have been wrongly inverted. We try to recognize the inverted suffix 
–yl starting from the current state 4 and considering a possible omission at the end 
of the word (no second error is admitted between y and l due to the condition that 
inverted letters must remain adjacent in the target word). That is impossible. 

•  The correct letter has been omitted at the current position 3. We try to recognize 
suffix –ly starting from any state that is reachable from state 4. In state 9 the rec-
ognition of –ly  is not possible with no more than 1 further error supposition. In 
state 5 the recognition of –ly is possible, which yields a new 1-operation candidate 
apply. No more modification needs to be considered for the suffix –ly, therefore 
the 2-operation candidate apple is not reached. The previously obtained candidate 
ape is eliminated as it is more distant from the original word than the new candi-
date. The new error distance threshold is 1. 

•  The correct letter at position 3 has been replaced by l. We try to recognize the 
suffix –y from any state that is reachable from state 4. That is not possible without 
any further modification. Since the new threshold is 1 this supposition is elimi-
nated. 

 
Fig. 1.  Extract of a finite-state lexicon 

To continue searching for other candidates we have to backtrack from state 4 to 
state 2 (and from word position 3 to 2), where 4 possible hypotheses are analysed 



again: wrong insertion of p (suffix �ly is unrecognizable from state 2, no candidate is 
proposed), wrong inversion of  l and p (suffix –lpy is unrecognizable), omission of the 
right letter at position 2 (the only state reachable from state 2 is 4, from which the 
suffix -ply is recognizable yielding the same candidate apply as previously obtained), 
replacement of the right letter at position 2 by p (impossible since there is only one 
transition from 2 to 4). 

Finally, backtracking from state 2 to state 1 (and from word position 2 to 1), yields 
two more one-operation candidates paly and ply. The two- and three-operation candi-
dates pale and  pales are not reached due to the reduced threshold. 

5   Algorithm 

An outline of our error-tolerant finite-state lookup algorithm is shown on figure 
Fig. 2. Let [l1 l2 ... ln] be the word to be looked up, and n its length. Let 
wp = 1, �, n+1 be the current word position. Let st be the current state, and t the 
error distance threshold between two suffixes (i.e. the number of elementary opera-
tions that we admit in a correct suffix so that it may still be considered a valid correc-
tion candidate for a misspelled suffix). 

The tolerant_lookup function tries to recognize the suffix [lwp ... ln] 
starting from the current state st and admitting t elementary operations on letters at 
most. This function returns a pair (ed,S) where S is the set of recognized (exact or 
modified) suffixes, and ed is the edit distance between the suffix [lwp ... ln] and 
each of the suffixes in S (all suffixes in S always have the same edit distance from 
[lwp ... ln]); if S is empty then ed = INF (a large number, bigger than the 
maximum edit distance ever possible). The first call to tolerant_lookup is done 
for the entire word [l1 ... ln], the initial state, and the desired edit distance 
threshold. Then we follow the standard look-up procedure, first without admitting any 
operation on letters. Thus we can immediately recognize the input word if it belongs 
to the lexicon, and then quit (the threshold value t becomes 0 in line 9 and lines 13-36 
are omitted). If the word doesn�t belong to the lexicon the standard look-up ends up 
with failure in one of the two cases: 1) the input sequence has been read in and the last 
state is not a terminal one, 2) the input sequence has not been read in completely and 
no further transition from the current state is possible. If the exact suffix [lwp ... 
ln] couldn�t be recognized, t remains positive  (code line 9) and we admit that an 
error occurred at position wp in the intended word. We try to recognize the input 
suffix [lwp ... ln] by admitting one of the four elementary operations: 
•  Insertion of the letter lwp (if we haven�t read the whole word yet; lines 13-17). We 

omit letter lwp and try to recognize the suffix [lwp+1 ... ln] starting from the 
current state st. We retain only the best solutions (see comment on function 
add_or_replace below). 

•  Inversion of letters at positions wp and wp+1 (if at least two letters are left; lines 
18-25). First we try to recognize the inverse infix [lwp+1 lwp ] starting from the 
current state st and allowing no modification because we require that inverted let-



ters must remain adjacent. Then we try to recognize the suffix [lwp+2... ln] 
starting from the arrival state stv. 

•  Omission of a letter at position wp (lines 27-30). For each transition leading from 
the current state  st to a state sts through a label l (line 26), we try to recognize 
the current suffix [lwp ... ln] starting from the state sts. Each solution found 
is concatenated with the transition label l (line 36). 

•  Replacement of the right letter at position wp through letter lwp (if we haven�t read 
the whole word yet; lines 31-36). For each transition leading from the current state  
st to a state sts through label l, we try to recognize the suffix [lwp+1 ... ln] 
starting from the state sts. 

Notice that each time new solutions are found the value of ed and the contents of S 
are updated by the function add_or_replace (lines 15, 23, 29, 34). If new solu-
tions are closer to the original word than the solutions already in S then S is replaced 
by the set of new solutions, and the value of ed by the new error distance. Otherwise 
the union of the two sets is done and ed remains unchanged. Thus, only those solu-
tions are retained that have the smallest error distance from the original suffix. Then t 
gets reduced (lines 9, 16, 24, 30, 35), which limits the range of further searches. 

The above algorithm can take as parameter any value of the edit distance threshold, 
but for languages like English and French, which we tested the program with, the 
reasonable limit seems to be 2 operations because admitting a bigger edit distance 
would often result in a great number of irrelevant corrections.1 Besides the look-up 
time for a high edit distance threshold would require the exploration of a very big 
section of the automaton, thus making the search time hardly acceptable for large 
corpus applications (cf section 6). 

1. tolerant_lookup ([lwp ... ln],st, t) 
2. begin 
3. S ← ∅ ; ed ← INF; 
4. if (wp > n) 
5. if terminal(st) then return (0,{ε}); endif;   

/*the empty suffix recognized*/ 
6. endif; 

/* look up the exact suffix, reduce the threshold so as not to admit more modifica-
tions than in the suffixes already found */ 

7. if (wp ≤ n) and (there is a transition (st,lwp,sts)) 
8. (ed,S)←tolerant_lookup([lwp+1 ... ln],sts,t); 
9. t = min(t,ed);  

/* concatenate the current letter lwp with all suffixes similar to  [lwp+1 ... ln]*/ 
10. for each (suff ∈  S) do suff ← lwp ° suff; endfor; 
11. endif ; 

/*look up modified suffixes*/ 
12. if (t>0) 

                                                           
1 According to a personal communication by Oflazer, about 50% of a 25000-word English 

lexicon are within threshold 4 or less from some erroneous words. 



/*suppose an insertion at position wp*/ 
13. if (wp ≤ n) 
14. (edn,Sn)←tolerant_lookup([lwp+1 ... ln],st,t-1); 

/*only the suffixes with the smallest edit distance are retained*/ 
15. (ed,S) ← add_or_replace(ed,S,edn+1,Sn); 
16. t = min(t,ed); 
17. endif; 

/*suppose an inversion of letters at positions wp and wp+1, these letters 
must remain adjacent*/ 

18. if ((wp < n) and (lwp ≠ lwp+1)) 
19. if (∃  ((st,lwp+1,sts) and (sts,lwp,stv))) 
20. (edn,Sn)←tolerant_lookup([lwp+2...ln],stv,t-1); 
21. for each (suff ∈  Sn) do suff ← [lwp+1 lwp]°suff; 
22. endfor; 
23. (ed,S) ← add_or_replace (ed,S,edn+1,Sn); 
24. t = min(t,ed); 
25. endif; endif ; 

 
26. for each transition (st,l,sts) 

/*suppose an omission of a letter at position wp*/ 
27. (edn,Sn)←tolerant_lookup([lwp...ln],sts,t-1); 
28. for each (suff ∈  Sn) do suff ← l°suff; endfor; 
29. (ed,S) ← add_or_replace (ed,S,edn+1,Sn); 
30. t = min(t,ed); 

/*suppose a replacement of the right letter by lwp  if the word not finished*/ 
31. if (wp ≤ n) 
32. (edn,Sn)←tolerant_lookup([lwp+1...ln],sts,t-1); 
33. for each (suff ∈  Sn) do suff ← l°suff; endfor; 
34. (ed,S) ← add_or_replace (ed,S,edn+1,Sn); 
35. t = min(t,ed); 
36. endif; endfor; endif; 
37. return(ed,S); end 

Fig. 2. Error-tolerant lookup algorithm 

6   Complexity and Performance 

The exact complexity of our error-tolerant look-up algorithm is difficult to find be-
cause it depends not only on the word�s length, but also on the size of the dictionary 
and its precise contents (i.e. the number and length of words that have common subse-
quences with the input word). Nevertheless, we can make some average case estima-
tion. Let n be the length of the input word, t the error distance threshold, and fmax the 



maximal fan-out of the automaton. Let lwp be the current letter in the input word, s the 
current state, and fs the fan-out of s. Depending on what modification is admitted pars-
ing of lwp from state s requires at most: 
− 1 transition in case of inversion (the transition that matches lwp+1); 
− no transition in case of insertion (lwp is omitted, we remain in the current state),  
− fs transitions in case of omission or replacement (all transitions starting from s). 

In the worst case, i.e. when the threshold is not reduced during the whole look-up, 
there are at most n! / t!(n-t)! possible distributions of t modifications over n word 
positions. For each distribution (1+2*fmax)t paths at most must be followed, each path 
being at most of length n+t. Hence, the worst case complexity is  

O(n! / t!(n-t)! * (n+t) * 2t * fmax
t) . 

In particular, for t=0 we get O(n), for t=1 O(n2*fmax), for t=2 O(n3 * fmax
2), etc. 

We have run the algorithm with threshold 2 on three sets of erroneous strings: se-
quences belonging to the lexicon, sequences containing one spelling error, and se-
quences containing two spelling errors or more. The average search time results are 
presented in the table below. Notice that the correction of 2 errors or more is over 5 
times longer than of a single error. 

Table 1. Spelling correction performances 

Correction time (ms) 

correct sequences one-error sequences two-error sequences sequences with 
more than 2 errors   

7 40 211 233 

7   Comparison with Oflazer’s Algorithm 

As we�ve already mentioned, our algorithm and Oflazer�s one admit different defi-
nitions of the correction problem (cf section 3)2.  

The main difference though is in the way the calculation of the error (edit) distance 
is done in the two approaches. In Oflazer�s algorithm a matrix H is maintained as 
described in section 2. Each time a transition is followed in the automaton a new col-
umn of the matrix is to be calculated by a function of linear complexity. In our ap-
proach the error distance calculation is embedded in the algorithm: each time we ad-
mit a modification in the standard lookup procedure the error distance increases. This 
allows us not to maintain the H-matrix but has also the two major disadvantages: 
•  It is difficult to adapt the error distance calculation to a particular application or 

language, e.g. by considering phonetically motivated interchanges of certain letters 
or groups of letters, as it was done in [1] for Polish. 

•  A correction candidate may be reached several times with different intermediate 
error distance values. For example while looking up the word *aply in the lexicon 

                                                           
2 Both algorithms could easily be modified though to admit the alternative approach. 



extract from section 4 with the edit distance threshold 3, the correction candidate 
ape would be first recognized twice as a 3-operation candidate: insertion of l + in-
sertion of y + omission of e, and insertion of l + omission of e+ insertion of y.  
Then the same candidate ape would be reached by 2 modifications: insertion of l + 
replacement of e by y, which would invalidate the two previous solutions. That can 
make us follow the same path in the automaton several times, which is not time-
efficient for bigger values of the edit distance threshold. 

For applications in which most errors are of 1 or 2 operations, and in which reach-
ing quickly the first solution is important, our algorithm will often be more efficient 
due to the fact that we first match the longest correct prefix. Note that in a finite state 
lexicon the fan-out is very big for the states close to the initial state. Oflazer�s algo-
rithm explores most of them at the beginning so it may take a longer time before a 
solution is found. Our algorithm first skips most of those states (unless the error oc-
curred at the initial position) and follows only the exact path. Since most of misspelled 
words contain only one error, there is a big chance that the point where the exact path 
was blocked is the position where the error occurred. 

8   Conclusion 

We have presented a method of typographical nearest neighbour search in a finite-
state lexicon and its comparison to a similar algorithm by Oflazer ([14]). Our method 
is designed for applications where only the least distant corrections are looked for and 
where the first correction is to be reached as soon as possible. Oflazer�s algorithm is 
simpler and more elegant in the sense that the edit distance calculation is independent 
from the look-up algorithm.  

References 

1. Daciuk, J.: Incremental Construction of Finite-State Automata and Transducers, 
and Their Use in the Natural Language Processing. PhD. thesis. Gdańsk, Poli-
technika Gdańska (1998) 

2. Daciuk, J., Mihov, S., Watson, B., Watson, R.: Incremental Construction of Mi-
nimal Acyclic Finite State Automata. Computational Linguistics, Vol. 26(1). MIT 
Press, Cambridge, Massachusetts (2000) 3-16 

3. Damerau, F. J.: A Technique for Computer Detection and Correction of Spelling 
Errors. Communications of the ACM, Vol. 7(3) (1964) 171-176 

4. Du, M. W., Chang, S. C.: A model and a fast algorithm for multiple errors spel-
ling correction. Acta Informatica, Vol. 29. Springer Verlag (1992) 281-302 

5. Golding, A., Schabes, Y.: Combining Trigram-based and Feature-based Methods 
for Context-Sensitive Spelling Correction. Proceedings, 34th Annual Meeting of 
the Association for Computational Linguistics (ACL) Santa Cruz. Association for 
Computational Linguistics (1996) 71-78 



6. Hall, P., Dowling, G.: Approximate String Matching. ACM Computing Surveys, 
Vol. 12(4). ACM, New York. (1980) 381-402 

7. Kaplan, R., Kay, M.: Regular Models of Phonological Rule Systems. Computa-
tional Linguistics, Vol. 20(3). Cambridge, Massachusetts, MIT Press (1994) 

8. Kornai, A. (ed.): Extended Finite State Models of Language. Cambridge Universi-
ty Press, Cambridge, UK � New York, USA - Melbourne, Australia (1999) 

9. Kukich, K.: Techniques for Automatically Correcting Words in Text. ACM Com-
puting Surveys, Vol. 24(4) (1992) 

10. Laporte, E., Silberztein, M.: Vérification et correction orthographiques assistées 
par ordinateur, Actes de la Convention IA 89 (1989) 

11. Lowrance, R., Wagner, R. A.: An Extension of the String-to-String Correction 
Problem. Journal of the ACM, Vol. 22(2) (1975) 177-183 

12. McIlroy, M. D.: Development of a Spelling List. IEEE Transactions on Commu-
nications, COM-30(1) (1982) 91-99 

13. Mohri, M.: Minimization of sequential transducers. Lecture Notes of Computer 
Science, Vol. 807. Springer Verlag. Berlin. (1994) 

14. Oflazer, K.: Error-tolerant finite state recognition with applications to morpholo-
gical analysis and spelling correction. Computational Linguistics, Vol. 22(1). MIT 
Press, Cambridge, Massachusetts (1996) 73-89 

15. Ren, X., Perrault, F.: The Typology of Unknown Words: An Experimental Study 
of Two Corpora. Proceedings, 15th International Conference on Computational 
Linguistics (COLING) Nantes. International Committee on Computational Lin-
guistics (1992) 408-414 

16. Roche. E., Schabes, Y. (eds.): Finite-State Language Processing. MIT Press, 
Cambridge, Massachusetts (1997) 

17. Véronis, J.: Morphosyntactic correction in natural language interfaces. Procee-
dings, 13th International Conference on Computational Linguistics (COLING), 
Budapest. International Committee on Computational Linguistics (1988) 708-713 

18. Wagner, R. A., Fischer, M. J.: The String-to-String Correction Problem. Journal 
of the ACM, Vol. 21(1) (1974) 168-173 

19. Watson, B.: Taxonomies and Toolkits of Regular Language Algorithms. Ph.D. 
Thesis, Eindhoven University of Technology, the Netherlands (1995) 

 


