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Abstract
Mathematical models of thrombosis are currently used to study clinical scenarios
of pathological thrombus formation. As these models become more complex to pre-
dict thrombus formation dynamics high computational cost must be alleviated and
inherent uncertainties must be assessed. Evaluating model uncertainties allows to
increase the confidence in model predictions and identify avenues of improvement
for both thrombosis modeling and anti-platelet therapies. In this work, an uncertainty
quantification analysis of a multi-constituent thrombosis model is performed consid-
ering a common assay for platelet function (PFA-100®). The analysis is facilitated
thanks to time-evolving polynomial chaos expansions used as a parametric surro-
gate for the full thrombosis model considering two quantities of interest; namely,
thrombus volume and occlusion percentage. The surrogate is thoroughly validated
and provides a straightforward access to a global sensitivity analysis via computation
of Sobol’ coefficients. Six out of fifteen parameters linked to thrombus consitution,
vWF activity, and platelet adhesion dynamics were found to be most influential in
the simulation variability considering only individual effects; while parameter inter-
actions are highlighted when considering the total Sobol’ indices. The influential
parameters are related to thrombus constitution, vWF activity and platelet to platelet
adhesion dynamics. The surrogate model allowed to predict realistic PFA-100® clo-
sure times of 300,000 virtual cases that followed the trends observed in clinical data.
The current methodology could be used including common anti-platelet therapies to
identify scenarios that preserve the hematological balance.
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1 INTRODUCTION

Thrombosis, which is defined as excessive formation of blood clot or thrombus, is a common pathology in several cardiovascular
diseases1, and blood-wetted medical devices2,3,4. Thrombus formation is characterized by an intertwined process of platelet
activity and coagulation. In this hemostatic process, platelet activation and aggregation leads to formation of a platelet plug that
is mechanically stabilized by a fibrin net formed by coagulation reactions5. In hemodynamic conditions that promote high shear
stresses, such as stenotic vessels or prosthetic heart valves or blood pumps, von Willebrand Factor (vWF) plays a central role in
thrombosis. vWF is a blood glycoprotein that has a collapsed globular conformation in its natural state and unfolds in response
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to extensional flow and high-shear flow conditions. Once unfolded, vWF plays an important role in the platelet adhesion and
aggregation process enabling clot formation.

Multi-scale computational models of thrombosis have been developed in the past decades to understand and predict the
thrombus formation dynamics in academic and clinical configurations (6,7,8,9,10,11,12). These models span several degrees of
complexity, from simple flow characteristic indices to complicated, coupled biochemical interactions. Mechanistic models, for
example, may contain equations that describe shear dependent platelet activity including adhesion, aggregation, and activa-
tion13,14,15; hemodynamics that regulate the transport of biochemical species16,17; and/or coagulation reactions that lead to the
formation of fibrin18,19,20. Increasing modeling complexity improves the fidelity and versatility of the model, but the computa-
tional cost of the simulation escalates. Also, increasing detail introduces additional uncertainties that can have a great impact on
its accuracy21. These uncertainties are related to the fundamental structure of the model , numerical discretization, and/or model
parameters such as diffusion coefficients, concentrations of biochemical species, fluid viscosity, etc. Previous investigators have
introduced several uncertainty quantification (UQ) strategies to evaluate the effect of such uncertainties on model performance
in the context of blood flows22,23,24,25. UQ analyses in thrombosis models have been performed to identify the sensitivity of
input parameters26,27,28,29. In most sensitivity studies, the global Morris method30 or the Sobol’ indices method31 have been
used. The Morris method is used as a screening tool to identify important parameters in models with a large number of input
variables. The Sobol’ method produces indices based on variance that quantifies the output uncertainty related to each input
parameter. For example, Melito et al.29 performed a variance based sensitivity analysis on the thrombosis model of Menichini
et al.7 considering thrombosis in a backward facing step. Their results suggest that only four of the nine parameters included in
their thrombosis model had significant impact in thrombus formation implying that the model could be made sparser to optimize
computational resources. Link et al.32 performed a sensitivity analysis to identify important coagulation factors in the thrombin
generation profile among hemophilia A patients. Their work allowed the identification of coagulation factor V as an important
modifier of thrombin formation among patients with hemophilia A, paving the way to pharmacological interventions to treat
these patients. In addition, as demonstrated by Link et al.32 the synthetic databases built to perform sensitivity analysis can serve
as hypothesis generation tool for in-vitro experiments or, in the long run, patient treatment.

In this work, a forward uncertainty propagation study is conducted using a well-established but computationally costly multi-
constituent thrombosis model introduced by Wu et al.33. A widely used platelet function assay PFA-100® (Siemens, Erlangen,
Germany) was selected as the study case. To understand the impact of uncertain input parameters a variance based global sensi-
tivity analysis was conducted monitoring Sobol’ sensitivity coefficients taking advantage of a polynomial chaos approximation
as a surrogate of the baseline thrombosis model. The surrogate model is also used in this study to assess its predictive ability of
the PFA-100® closure time distribution in three scenarios: normal platelet count, thrombocytopenia, and vWF deficiency. The
predicted closure times distribution align well with clinical data.

2 METHODS

2.1 Baseline Thrombosis Model
The thrombosis model used in the current work is a variation of the approach introduced by Wu et al.33 with the addition of vWF
activity. Figure 1 A shows how platelets, the central player of the model, deposit to artificial surfaces. Figure 1 B illustrates vWF
unfolding due to high shear rates increasing platelet deposition. Thrombus growth is quantified through platelet deposition over
artificial surfaces and subsequent platelet aggregation. Several biochemical species are considered in the model: 1) AP Activated
platelets, 2) RP Resting Platelets, 3) AP𝑑 Deposited activated platelets, 4) RP𝑑 Deposited Resting Platelets 5) ADP Adenosine
Diphosphate, 6) TxA2 Thromboxane A2, 7)TB Thrombin , 8) PT Prothrombin, 9) AT Anti-Thrombin, 10) vWFc vWF Coiled,
and 11) vWFs vWF stretched.

The spatial and temporal dynamics of biochemical species are quantified through convection-diffusion-reaction equations of
the form:

𝜕𝑐𝑖
𝜕𝑡

= ∇ ⋅ (𝐷𝑖∇𝑐𝑖) − 𝒗𝑓 ⋅ ∇𝑐𝑖 + 𝑟𝑖, (1)

where: 𝑐𝑖 is the concentration of species 𝑖, 𝐷𝑖 is the diffusion coefficient, 𝒗𝑓 is the velocity vector field, and 𝑟𝑖 is the reaction
source term that accounts for biochemical interactions such as platelet activation by thrombin or TxA2.
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FIGURE 1 A) Diagram of platelet activation and deposition in the thrombosis model. 𝑘𝑟𝑝𝑑,𝑏 and 𝑘𝑎𝑝𝑑,𝑏 are the rates at which
resting and activated platelets deposit to the surface. Resting platelets can be activated by mechanical shear, or the combination
of agonists: ADP, TxA2 and thrombin. Once deposited, AP𝑑 can stabilize or embolize due to flow shearing forces. B) Schematic
depiction of vWF unfolding and vWF-mediated platelet deposition and aggregation. The presence of stretched vWFs amplifies
the deposition rate of free-flowing platelets by 𝛼𝑘 and increases the resistance of deposited platelets to shear cleaning by 𝛼𝜏 .

2.1.1 vWF activity
To account for the role of vWF in high shear stress thrombosis the original model of Wu et al.33 was amended to include
the enhanced platelet aggregation and adhesion driven by vWF activity. The right-hand side of Figure 1 shows the two inter-
convertible states of vWF in the model: collapsed vWFc and stretched vWFs . In all simulations, only vWFc is introduced at the
inlet of the domain and vWFs is produced by means of vWFc unfolding. The presence of stretched vWFs polymers has a local
thrombogenic effect via two mechanisms: it amplifies the deposition rate of free-flowing platelets by scaling it by 𝛼𝑘 (Eq (2))
and increases the resistance of deposited platelets to shear cleaning by scaling the shear-cleaning parameters, 𝜏𝑒𝑚𝑏 and 𝜏𝑒𝑚𝑏,𝑏, by
𝛼𝜏 according to Eq (3)

𝛼𝑘 =

{

1, if vWFs ≤ vWFcritsvWFs
vWFcrits

, if vWFs > vWFcrits
(2)

𝛼𝜏 =

{

1, if vWFs ≤ vWFcrits
𝐷𝑒(�̇�)
𝐷𝑙
𝑒
, if vWFs > vWFcrits ,

(3)

where vWFcrits is set as 5% of the total vWF concentration;𝐷𝑒 is the Morse potential’s well depth proposed by Yazdani et al.8
that correlates the platelet adhesion force to the local shear rate, �̇� , according to Eq (4);

𝐷𝑒(�̇�) = 𝐷ℎ
𝑒

[

tanh
(

�̇� − �̇�𝑣𝑊𝐹
1000

)

+
𝐷𝑙
𝑒

𝐷ℎ
𝑒
+ 1

]

, (4)
𝐷𝑙
𝑒 and 𝐷ℎ

𝑒 determine the adhesive forces at low and high shear rates, respectively, and �̇�𝑣𝑊𝐹 = 5500 s-1 is the critical shear
rate for vWF unfolding and marks the transition from low-shear to high-shear regime in this expression. The value for 𝐷𝑙

𝑒, 𝐷ℎ
𝑒 ,

vWFcrits , and �̇�𝑣𝑊𝐹, were obtained from Yazdani et al.8. The scalar shear rate �̇� is computed following OpenFoam source code34:
�̇� =

√

2𝑇 𝑟(𝑠𝑦𝑚𝑚(∇𝒖) ⋅ 𝑠𝑦𝑚𝑚(∇𝒖)) (5)
vWFc unfolding occurs via two mechanisms: periodic tumbling in simple shear and strong unfolding in flows with extensional
kinematics. The flow classification is based on polymer unfolding criteria by Babcock et al.35 where they define the flow-type
𝜆 as:

𝜆 =
‖𝑺‖ − ‖𝜴‖

‖𝑺‖ + ‖𝜴‖

(6)
where ‖𝑺‖ and ‖𝜴‖ are the magnitudes of the symmetric and anti-symmetric parts of the velocity gradient tensor, respec-

tively. Thus, in the limiting cases of the flow type parameter, 𝜆 = 1 corresponds to purely extensional flow, 𝜆 = 0 to simple shear
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flow, and 𝜆 = −1 to solid-body rotation. vWF will experience strong unfolding in flows with 𝜆 ≥ 𝜆𝑐𝑟𝑖𝑡, simple-shear tumbling
in −𝜆𝑐𝑟𝑖𝑡 ≤ 𝜆 < 𝜆𝑐𝑟𝑖𝑡, and remain collapsed if 𝜆 < −𝜆𝑐𝑟𝑖𝑡.

In simple shear and near-shear flows, −𝜆𝑐𝑟𝑖𝑡 ≤ 𝜆 < 𝜆𝑐𝑟𝑖𝑡, the unfolding rate, 𝑘𝑐-𝑠 (collapsed-to-stretched conversion), follows
a function proposed by Lippok et al.36 for shear-dependent cleavage rate of vWF. Since this function describes the availability
of vWF monomers for enzymatic cleavage, the unfolding rate is assumed to follow the same shape, given by Eq. (7)

𝑘𝑠ℎ𝑒𝑎𝑟𝑐-𝑠 (�̇�) = 𝑘′

1 + exp
(

− �̇�−�̇�𝑣𝑊𝐹
Δ�̇�

) (7)

𝑘𝑠ℎ𝑒𝑎𝑟𝑠-𝑐 = 𝑘′ (8)
where �̇�𝑣𝑊𝐹 = 5500 s-1 is the critical (half-maximum) shear rate for vWF unfolding and Δ�̇� = 1271 s-1 denotes the width of

the transition. 𝑘′ is the nominal state conversion rate, given by 𝑘′ = 1∕𝑡𝑣𝑊 𝐹 , where 𝑡𝑣𝑊 𝐹 = 50 ms is the vWF unfolding time.
This timescale for vWF unfolding was reported in experiments by Fu et al.37 and Brownian dynamics simulations by Dong et
al.38,39 To reflect the tumbling behavior of the vWF in this regime, the stretched-to-collapsed conversion rate, 𝑘𝑠-𝑐 is set to the
nominal value 𝑘′ (Eq. (8)).

In extensionally-dominated flows with 𝜆 ≥ 𝜆𝑐𝑟𝑖𝑡, strong unfolding occurs if the modified Weissenberg number, 𝑊 𝑖𝑒𝑓𝑓, given
by Eq. (9), exceeds the critical value 𝑊 𝑖𝑒𝑓𝑓,𝑐𝑟𝑖𝑡. Then, the unfolding rate 𝑘𝑠𝑡𝑒𝑎𝑑𝑦𝑐-𝑠 scales with 𝑊 𝑖𝑒𝑓𝑓 according to Eq. (10), while
𝑘𝑠𝑡𝑒𝑎𝑑𝑦𝑠-𝑐 is zero.

If 𝑊 𝑖𝑒𝑓𝑓 falls below 𝑊 𝑖𝑒𝑓𝑓,𝑐𝑟𝑖𝑡, the stretched vWFs exhibits hysteresis and does not collapse back to vWFc until 𝑊 𝑖𝑒𝑓𝑓 <
𝑊 𝑖𝑒𝑓𝑓,ℎ𝑦𝑠𝑡, as shown in Eq. (11).

𝑊 𝑖𝑒𝑓𝑓 =
√

𝜆 (‖𝑺‖ + ‖𝜴‖) 𝜏𝑟𝑒𝑙 (9)

𝑘𝑠𝑡𝑒𝑎𝑑𝑦𝑐-𝑠 =

{

𝑘′ 𝑊 𝑖𝑒𝑓𝑓
𝑊 𝑖𝑒𝑓𝑓,𝑐𝑟𝑖𝑡

, if 𝑊 𝑖𝑒𝑓𝑓 ≥ 𝑊 𝑖𝑒𝑓𝑓,𝑐𝑟𝑖𝑡
𝑘𝑠ℎ𝑒𝑎𝑟𝑐-𝑠 , if 𝑊 𝑖𝑒𝑓𝑓 < 𝑊 𝑖𝑒𝑓𝑓,𝑐𝑟𝑖𝑡

(10)

𝑘𝑠𝑡𝑒𝑎𝑑𝑦𝑠-𝑐 =

{

0, if 𝑊 𝑖𝑒𝑓𝑓,ℎ𝑦𝑠𝑡 ≤ 𝑊 𝑖𝑒𝑓𝑓 < 𝑊 𝑖𝑒𝑓𝑓,𝑐𝑟𝑖𝑡.
𝑘′, if 𝑊 𝑖𝑒𝑓𝑓 < 𝑊 𝑖𝑒𝑓𝑓,ℎ𝑦𝑠𝑡.

(11)
where 𝜏𝑟𝑒𝑙 is the polymer relaxation time used to non-dimensionalize the expression. Here, we adopted the unfolding threshold

and the hysteresis value reported by Sing and Alexander-Katz.40 Assuming the monomer diffusion time of 1.02×10−3 s for 𝜏𝑟𝑒𝑙
in Eq. (9), 𝑊 𝑖𝑒𝑓𝑓 ,𝑐𝑟𝑖𝑡 = 0.316 and 𝑊 𝑖𝑒𝑓𝑓 ,ℎ𝑦𝑠𝑡 = 0.053.

If 𝜆 < −𝜆𝑐𝑟𝑖𝑡, vWFc remains collapsed and vWFs reverts to a globular state, so 𝑘𝑐-𝑠 = 0 and 𝑘𝑠-𝑐 = 𝑘′.
The reaction term for vWFc and vWFs is then obtained by multiplying the reaction rates previously described by the con-

centration of this species following the law of mass action. A detailed validation of the vWF-thrombosis model is provided in
Zhussupbekov et al.41 for multiple academic simple flow configurations and complex in-vitro clotting scenarios.

2.1.2 Flow dynamics
The pressure and velocity fields 𝑝 and 𝒗𝑓 are obtained solving the Navier-Stokes equations considering an incompressible
Newtonian fluid:

𝜕𝜌𝑓
𝜕𝑡

+ ∇ ⋅ (𝜌𝑓v𝑓 ) = 0 (12)

𝜌𝑓
𝐷v𝑓
𝐷𝑡

= ∇ ⋅ T𝑓 + 𝜌𝑓b𝑓 + 𝐶2𝑓 (𝜙)(v𝑓 − v𝑇 ) (13)
where T𝑓 is the stress tensor of the fluid described as:

T𝑓 = [−𝑝(1 − 𝜙)]I + 2𝜇𝑓 (1 − 𝜙)D𝑓 (14)
where 𝜇𝑓 is the asymptotic dynamic viscosity of blood. The scalar field 𝜙 is introduced to represent the volume fraction of

deposited platelets (thrombus). D𝑓 is the symmetric part of velocity gradient. The fluid phase density 𝜌𝑓 is defined as

𝜌𝑓 = (1 − 𝜙)𝜌𝑓0 (15)
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where 𝜌𝑓0 is the density reference value of the fluid phase, b𝑓 is the body force, v𝑓 is and v𝑇 are the velocity of the fluid
and thrombus phases, respectively. 𝐶2 is the resistance constant assuming that deposited platelets are densely compact spherical
particles (2.78 𝜇m), 𝑓 (𝜙) = 𝜙(1 + 6.5𝜙) is the hindrance function. For a full description of the original thrombosis model the
reader is referred to the work of Wu et al.33 and Sorensen et al.13.

2.2 Case of Study PFA-100®
The platelet function analyzer PFA-100® (Siemens Erlangen, Germany) is a coagulation testing device that is used to assess the
primary hemostasis response42. Figure 2 shows a cross section sketch of the PFA-100® test cartridge whose main component
is a bio-active membrane with a central orifice of 140 microns diameter. Whole blood is aspirated through a capillary towards
the membrane, as blood flows through the central orifice of the membrane, a thrombus forms until occlusion is achieved. The
membrane is coated with collagen and epinephrine or ADP to promote thrombus formation. Flow is driven by a vacuum system
that applies a Δ𝑝 of 4000 Pa. Shear rates inside the orifice reach values up to 6000 s−1 promoting vWF unfolding leading
to preferential thrombus formation43 inside the membrane orifice. When the orifice is fully occluded a Closure Time (CT) is
obtained which is the quantity used to diagnose patients. The normal CTs are in the range 79-139 s for epinephrine cartridges
and 61-105 s for ADP cartridges42. Prolonged CT times are observed in patients with major platelet defects (Bernard Soulier
syndrome, Glanzmann’s thrombasthenia, thrombocytopenia, etc.) and vWF disease, or acquired vWF disease, among others42).
In addition, CT times are affected by a variety of hematological and pharmacological factors such as hematocrit and aspirin.

FIGURE 2 Cross section of PFA-100® testing cartridge showing the capillary, the central membrane with orifice, and reservoir.
As whole blood is aspired through the cartridge blood constituents aggregate in the coated membrane orifice. The dimensions
of the PFA-100 cartridge as considered in the simulations are: 𝐷𝑐 = 200, 𝐷𝑚 = 147,𝐷𝑟 = 1200, 𝐻1 = 1000, 𝐻2 = 400,
𝐻3 = 1200, and 𝐻𝑚 = 200 all in 𝜇m.
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FIGURE 3 A) Numerical setup of PFA-100® thrombosis simulation. The membrane is set as reactive boundary condition
allowing platelet deposition. B) Scalar shear rate field, large shear rates are observed in the membrane orifice. C) concentration
of stretched vWF (vWFs) illustrating unfolding within and downstream of the membrane orifice.

2.3 Baseline Thrombosis Simulation
An axisymmetric thrombosis simulation of the PFA-100® assay is the baseline case for the uncertainty quantification analysis.
Figure 3A shows the setup of the simulation. A uniform velocity profile v𝑓 = (0, 0.127, 0) m s−1 was set at the inlet boundary.
This boundary condition was used to avoid numerical instabilities observed in pressure driven flows. The membrane and cartridge
walls were set as no-slip boundary conditions. A zero gradient velocity boundary condition was considered at the outlet. The
pressure the outlet boundary was set to zero, and a zero gradient boundary condition was set for all remaining boundaries. In
terms of biochemical species Table 1 lists the blood constituents concentrations that were prescribed at the inlet boundary. The
platelet count values are representative of patients treated with ventricular assist devices44. At the outlet and cartridge walls a
zero gradient boundary condition was applied for the species concentration. To reflect the ADP-collagen coated membrane, a
reactive boundary condition was prescribed over the membrane to specify the region in which platelets are allowed to deposit.
In addition, a diffusive flux of ADP = 1 × 107 nmol m−2 s−1 was prescribed to mimic shedding of ADP coating from the
membrane. The ADP flux value was determined by best fit to clinical occlusion times reported by Steinlechner et al.44. All
remaining variables were derived from the literature. The diffusion coefficient for each biochemical species were taken from45.
We employed a Newtonian constitutive model for blood with a viscosity of 3.5 cP and a density of 1050 kg m−3. The parameter
values describe along Section 2.1.1 were used in the baseline thrombosis simulation.

The computational mesh was composed of 68650 hexahedral cells with a finest resolution of Δ𝑥 = 3 𝜇m located in the
membrane orifice. A dual time step strategy was used to economize computational cost. A time step of Δ𝑡𝐶𝐷𝑅 = 1 × 10−3

s was used to solve the species equations and thrombus growth. The flow equations are solved with a time step Δ𝑡𝐶𝐹𝐷 =
Δ𝑡𝐶𝐷𝑅∕𝑟𝑓𝑙𝑜𝑤 = 1×10−8 s, ensuring the Courant–Friedrichs–Levy stability condition CFL ≤ 1, this strategy has been previously
used in multi-scale platelet activation simulations46. A parametric study with different values of the scaling factor 𝑟𝑓𝑙𝑜𝑤 spanning
four orders of magnitude was performed to show the robustness of the approach (See Supporting Information). Before running
the thrombosis simulation, a steady state flow solution was obtained to improve stability at the first instants of the thrombosis
simulation. The resulting shear rate field was computed corroborating that inside of the membrane orifice induced shear rates
greater than 6000 s−1 required for vWF stretching. (See Figure 3B and C.)

Figure 4A shows the thrombus formation at 100 seconds of simulation, the blood clot is visualized through a platelet volume
fraction threshold > 0.8. Thrombus is formed inside the membrane orifice within the time scales observed clinically in VAD
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Species Concentration
RP 216 ×103 Plt 𝜇𝐿−1
AP 2.16 ×103 Plt 𝜇𝐿−1

vWFc 1000 nmol m−3

PT 1.1×106 nmol m−3

TB 0 nmol m−3

AT 2.844 ×106 nmol m−3

ADP 0 nmol m−3

TxA2 0 nmol m−3

TABLE 1 Blood constituents inlet concentrations, the platelet count is representative of patients treated with ventricular assist
devices44.

FIGURE 4 A) 3D rotational extrusion view of thrombus formation at 100 seconds of simulation, clot forms inside the membrane
orifice. The blue line and arrow denote the rotation axis to obtain the 3D view. B) Quantities of interest (𝑌 (𝑋𝑖)) for the UQ
analysis, occlusion percentage across the top edge of the membrane (dashed line) and total thrombus volume inside (solid line).

patients (80-150 s)44, the simulation closure time is defined at 80 % of occlusion since full thrombotic closure is not numerically
achievable due to exponential increase of mechanical shear prompting thrombus cleaning and preventing full occlusion. The
main mechanism that drives clot formation can be explained as follows: 1) platelets deposit on the collagen coated membrane, 2)
ADP within the membrane amplifies platelet activity, 3) large shear rates inside the membrane promote both platelet activation
and vWF unfolding, further amplifying platelet deposition, 4) as the clot grows, the orifice area is reduced further increasing
shear rates, which increases vWF activity forming a positive feedback loop mechanism. The quantities of interest (QoIs) chosen
for the UQ analysis, described below, are: (1) the percentage of occlusion over the top edge plane of the membrane and (2) the
total thrombus volume in the domain. These quantities are plotted in Figure 4B.

In order to show the importance of including the vWF unfolding dynamics and its influence on the platelet adhesion process,
a simulation imposing vWFc inlet condition to zero was performed. This simulation corresponds to the original model of Wu
et al. Figure 5 A shows the absence of clot without vWFc . The platelet deposition rates for both cases are presented in Fig. 5 B
showcasing that vWF activity increases the deposition rates inside the membrane promoting thrombus formation.

2.4 Uncertainty Quantification
2.4.1 Identification and modeling of random sources
The thrombosis model used in this study is one of the most realistic models up to-date for medical devices47. In the following
we will therefore put aside the model uncertainty in terms of its structure, complexity and underlying numerical algorithmic
and we will focus only on physical parametric uncertainty. The model involves a total of 68 parameters (diffusion coefficients,
reaction rates, biochemical concentrations, viscosity, density, etc). The uncertainties related to the microfluidic assay geometry
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FIGURE 5 Thrombosis simulation with inlet condition vWFc = 0 nmol m−3 which corresponds to the original model of Wu et
al.33. A) Lack of thrombus formation at 100 seconds with inlet boundary condition vWFc = 0 nmol m−3. B) Platelet deposition
rate 𝑘𝑎𝑝𝑑 for vWFc = 0 nmol m−3, and C) Platelet deposition rate 𝑘𝑎𝑝𝑑 for vWFc = 1000 nmol m−3.

were not considered as they are not as important as in physiological vessel hemodynamics. Due to the computational cost
of performing an analysis considering all the model parameters (64 core-hours per simulation), we have selected a subset
of 15 influential parameters based on our experience gained from previous thrombosis simulations in both macroscopic and
microscopic configurations48,33,49,41. The parameters are listed in Table 2 with their definition and distribution values. The
literature does not show evidence of particular type of uncertainty distributions for these parameters. At best only low-order
statistics are available (i.e. mean and standard deviation), which implies (under a maximum entropy principle) to model the
distributions as normally distributed. For sake of simplicity, independent Gaussian probability distributions were assumed for the
parameters. Moreover, in order to introduce a similar level of uncertainty for all input parameters, we set the standard deviation
to be ten percent of the mean value for each parameter, cf. Table 2. This choice was done to avoid bias in the selection of the
standard deviation value for each parameter as they are not well characterized in the literature.

Parameter 𝑋𝑖 Definition Distribution (mean, standard deviation)
1) RP Resting platelets  (216 × 103, 21.6 × 103) Plt 𝜇𝐿−1
2) AP Activated platelets  (2160, 216) Plt 𝜇𝐿−1
3) vWFc vWF concentration  (1000, 100) nmol m−3

4) 𝐾𝑟𝑝𝑑 Deposition rate RP (to membrane)  (1.0 × 10−8, 1.0 × 10−9) m s−1
5) 𝐾𝑎𝑝𝑑 Deposition rate AP (to membrane)  (3.0 × 10−6, 3.0 × 10−7) m s−1
6) 𝐾𝑎𝑎 Deposition rate of AP to 𝐴𝑃𝑑  (3.0 × 10−5, 3.0 × 10−6) m s−1
7) 𝐾𝑟𝑎 Deposition rate of RP to 𝐴𝑃𝑑  (3.0 × 10−6, 3.0 × 10−7) m s−1
8) �̇�𝑣𝑊𝐹 critical shear rate for vWF unfolding  (5500, 550) s−1
9) Δ�̇� vWF shear unfolding transition width  (1271, 127.1) s2
10) 𝜆𝑐𝑟𝑖𝑡 Flow type critical value for strong unfolding  (0.005, 0.0005) dimensionless
11) 𝑡𝑣𝑊 𝐹 vWF relaxation time  (0.05, 0.005) s
12) 𝑊 𝑖𝑒𝑓𝑓,𝑐𝑟𝑖𝑡 𝑊 𝑖𝑒𝑓𝑓 critical value for strong unfolding  (0.316, 0.0316) dimensionless
13) 𝑊 𝑖𝑒𝑓𝑓,ℎ𝑦𝑠𝑡 𝑊 𝑖𝑒𝑓𝑓 hysteresis value  (0.053, 0.0053) dimensionless
14) vWFcrits Critical vWFs concentration value  (50, 5) nmol m−3

15) 𝐷ℎ
𝑒 ∕𝐷

𝑙
𝑒 Ratio of adhesive forces at high and low shear rates  (500, 50) dimensionless

TABLE 2 Fifteen (15) parameters of the thrombosis model.
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2.4.2 Polynomial chaos surrogate modeling framework
Numerical simulation of blood flow problems are nowadays more common, mainly because of increasing computational power,
progress in imaging and numerical algorithms. Nevertheless, it remains very costly to quantify the link between multi-physics,
multi-scale and multi-parameters phenomena to useful clinical indicators. A large number of model order reduction techniques
have been proposed, e.g.50,51.
In order to alleviate the computational cost of a parametric study involving the full thrombosis model, a surrogate model will
be constructed in place of the direct thrombosis model. The surrogate model should approximate the quantity of interest 𝑌 as
accurately as possible. We remind the reader that this is not an obvious task in case one is interested in multiple quantities of
interest. A continuous surrogate is constructed from a finite set of the thrombosis model predictions for some selected parameter
values in a "off-line" stage, and subsequently used "in-line" during the prediction stage. To this end, different methods are
available such as Gaussian processes52, support vector machines53, stochastic interpolation54, or stochastic spectral methods
such as polynomial-based representations. Polynomial chaos expansions (PCE) will be retained to express the surrogate model in
a closed form55,56 and some formulations exist to adaptively construct the approximation functionals satisfying some optimality
criteria, e.g.57. Let (Ω,,) be the probability space whereΩ is the space of random events𝜔, this domain has a 𝜎-algebra and
is equipped with a probability measure  . The vector of normally-distributed random parameters can be written as𝑿 ≡ 𝑿(𝜔) =
(𝑋1,… , 𝑋𝑑=15). If we consider, at a given time instant, the 𝑑−variate and second-order random variable 𝑌 ∶ 𝑿 ⊆ ℝ𝑑 → ℝ,
then 𝑌 (𝑡,𝑿) ∈ 𝓁2(Ω,,), can be expressed as the following expansion56:

𝑌 (𝑡,𝑿) =
∞
∑

𝑗=0
𝑦𝑗(𝑡) ψj(𝑿), (16)

where ψj(𝑿) =∏𝑑
𝑖=1 𝜓

(𝑖)
𝑗 (𝑋𝑖) are the multivariate basis functions that form a complete basis, orthonormal with respect to the

probability measure 𝜌𝑿 of the random input, and 𝜓 (𝑖)𝑗 are the univariate Hermite polynomial functions along the 𝑖th dimension.
In practice, PCE expansion must be truncated, and writes:1

𝑌 (𝑡,𝑿) ≈
∑

𝜸∈𝛽𝑝

𝑦𝜸(𝑡) ψ𝜸(𝑿), (17)

where 𝑦𝜸(𝑡) are the evolving modal coefficients corresponding to the ψ𝜸 basis. For instance, a choice of 𝑝 = 2 corresponds to
at most quadratic Hermite polynomials in the variables 𝑿. We will restrict ourselves to tensor-product polynomial spaces ℙ𝛽𝑝 ,where 𝛽𝑝 is an index set of “degree" 𝑝, and where 𝑃 = dim(ℙ𝛽𝑝) ≡ #𝛽𝑝, will denote the cardinality of the selected polynomial
space. There are different ways of constructing the approximating polynomial spaces that will impact their cardinality. More
specifically, in this study we will rely on 𝑞−norm type of polynomial spaces, allowing for an hyperbolic truncation of the
approximation basis (therefore reducing the computational cost): ℙ𝛽𝑝,𝑞 with index set 𝛽𝑝,𝑞 = {𝒚 ∈ ℙ𝛽𝑝 ∶ ‖𝒚‖𝑞 =

(

∑

𝜸 𝑦
𝑞
𝜸

)1∕𝑞
≤

𝑝}58. By default, the hyperbolic truncation with 𝑞 = 1 reduces to the standard total-degree truncation scheme. Decreasing the
value of 𝑞 de facto decreases the number of polynomials of high interaction order kept in the expansion.

2.4.3 Adaptively constructing the surrogate by least-squares minimization with regularization
Based on a training set {𝑿(𝑖), 𝑌 (𝑖)}𝑖=1,…,𝑁 collected at each time instant, ordinary linear regression can be used to compute the
unknown coefficients 𝒚 ≡ 𝑦𝜸 ,59,60 by minimizing the residuals 𝒓 ≡ 𝒀 −𝝍𝛽𝑝𝒚 in the 𝓁2−norm through an optimization problem:

𝒚 = argmin
𝐲∈ℝ𝑃

‖𝒀 − 𝝍𝛽𝑝𝐲‖
2
2
, (18)

where 𝝍𝛽𝑝 is the measurement matrix corresponding to the gPC expansion in the index set 𝛽𝑝. The solution is obtained in
matrix form as:

𝒚 =
(

𝚿𝖳
𝛽𝑝
𝚿𝛽𝑝

)−1
𝚿𝖳
𝛽𝑝
𝐘, (19)

where 𝐘 is a vector of observations of size 𝑁 × 1, 𝚿𝛽𝑝 the measurement matrix of size 𝑁 × 𝑃 with Ψ𝑖𝑗 = ψj(𝑿𝑖), and 𝒚 the
vector of coefficients of size 𝑃 ×1. Unfortunately, when the number of simulations𝑁 < 𝑃 , the problem is not well posed under

1Instead of indexing the expansion on a single integer amounting to the cardinality of the entire approximation space, one can also make use of a multi-index notation
that is equivalent. If 𝛽𝑝 is an index set for multi-index 𝜸 = (𝛾1,… , 𝛾𝑑 ) ∈ ℕ𝑑0 , then ℙ𝛽𝑝 ≡ span{𝜓𝜸 | 𝛄 ∈ 𝛽𝑝}.
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this formulation and one needs to add a regularization term in the form of:

𝒚 = argmin
𝐲∈ℝ𝑃

1
2
‖𝒀 −𝛙𝛽𝑝𝐲‖

2
2
+ 𝛽‖𝐲‖1, (20)

with ‖𝒚‖1 =
∑

𝜸∈𝛽𝑝
|

|

|

𝑦𝜸
|

|

|

, which is moreover a good strategy to favour sparsity of the surrogate in high dimension, i.e. that it
forces the minimization to favour low-rank solutions. In this paper, we rely on one of the several algorithms used to solve this
constrained optimization problem, namely least angle regression (LAR)61, which has been adapted to the context of PCE by
Blatman and Sudret62. They have designed an adaptive hybrid form of LAR in order to obtain a sparse PCE representation that
remains reasonably accurate even with for small experimental designs. Other more robust sparse representation approaches favor
the early detection of data outliers63. In practice the adaptive PCE-LAR algorithm will be run at each time instant at which the
data sample from the full thrombosis model is available. For each surrogate build, it will test through a polynomial order range
and will select the optimal polynomial based on some validation criteria described hereafter. Thanks to the formulation, the
retained polynomial basis will most likely be quite sparse (which means that a large portion of the modal coefficients will be null),
resulting in a compact surrogate model. The leave-one-out (LOO) cross-validation error is a statistical learning technique, that
is conveniently used for cases with small design of experiments (DoE). It consists in building 𝑁 metamodels, each one created
on a reduced experimental design𝑿𝑙, i.e. the training set obtained by removing a point (𝑿(𝑙), 𝑌 (𝑙))𝑙∈{1,2,…,𝑁}, and comparing its
prediction on the excluded scenario 𝑿(𝑙) with the real value obtained from the thrombosis simulation. These 𝑁 errors are then
averaged into a single value which may be collected for several time instants and different approximation bases for instance.

2.4.4 Surrogate-based global sensitivity analysis
Once the modal coefficients are computed, moments, confidence intervals, sensitivity analysis and probability density function
of the solution can be readily evaluated. Global variance-based sensitivity analysis may be performed to quantify the relative
importance of each (or a group of) random input parameter to the uncertainty response of the system. The Sobol’ functional
decomposition of 𝑌 = 𝑓 (𝑡,𝑿) is unique and hierarchic. We have:

𝑌 = 𝑓 (𝑡,𝑿) =
∑

𝒔⊆{1,2,…𝑁𝑑}
𝑓𝒔(𝑡,𝑿𝒔), (21)

where 𝒔 is a set of integers such that 𝑿𝒔 = (𝑋𝑠1 ,… , 𝑋𝑠𝑁 ), with 𝑁 = card(𝒔) = |𝒔| and 𝑓∅ = 𝑓0 = 𝔼[𝑌 ]. In this way, the
variance of the response can be decomposed as64:

𝕍 (𝑌 ) ≡ 𝜎2(𝑡) =
∑

𝒔⊆{1,2,…𝑁𝑑}
𝜎2𝒔 (𝑡), with 𝜎2𝒔 (𝑡) = 𝕍

(

𝔼
[

𝑌 |𝑿𝒔
])

−
∑

𝒖⊂𝒔
𝒖≠𝒔
𝒖≠∅

𝜎2𝑢 (𝑡), (22)

where 𝕍 and 𝔼 are the variance and the expectation operators, respectively. The normalized Sobol’ indices 𝑆𝒔 are defined as65:

𝑆𝒔 ≡
𝜎2𝒔 (𝑡)
𝜎2(𝑡)

and ∑

𝒔⊆{1,2,…𝑁𝑑}
𝒔≠∅

𝑆𝒔(𝑡) = 1, (23)

which measure the sensitivity of the variance of 𝑌 due to the interaction between the variables 𝑿𝒔, without taking into account
the effect of the variables 𝑿𝒖 (for 𝒖 ⊂ 𝒔 and 𝒖 ≠ 𝒔). In this work, we consider first- and total-order Sobol’ indices. The first-
order quantifies the effect of the single parameter alone𝑋𝑠 on the output. The total index of input variable𝑋𝑠, denoted 𝑆𝑇𝑠 , is the
sum of all the Sobol’ indices involving this variable: 𝑆𝑇𝑠 =

∑

𝒔⊆{1,2,…𝑁𝑑}
𝑆𝒔. This latter definition is not practical since it would

result in computing each index separately. Instead, by denoting 𝑆�̃� the sensitivity measure of all the variables excluding variable
𝑋𝑠, the total index can be rewritten as: 𝑆𝑇𝑠 = 1 − 𝑆�̃�. Previous Sobol’ indices can be evaluated by Monte-Carlo estimators, but
require very large samples and introduce errors due to sampling. Instead, they can be obtained very straightforwardly directly
from the polynomial chaos modal coefficients. Thanks to the orthonormality of the approximation basis, the Sobol’ indices are
explicitly obtained as combination of the PCE coefficients66. Despite this "exact" relation, the Sobol’ indices are only accurate
if the surrogate PCE is itself accurate.



Méndez Rojano ET AL 11

3 RESULTS

3.1 Multi-constituent Thrombosis Simulations
The evolution in time of closure percentage and thrombus volume is shown in Fig.6 for 120 simulations. Closure percentage
(Fig.6 A) is observed to follow a sigmoidal curve reaching a plateau of about 90% at time of 100-200 seconds. The variance
among simulations appears to be greatest during the rapid growth portion of the curve, and virtually nil during the first and
last 25 seconds (variance ≈ 0 and 1.4 times the corresponding mean respectively). It is noteworthy that the simulations do not
reach full occlusion due to extremely high shear rates as the orifice cross section area approaches zero, and thrombus cleaning
predominates.

In terms of the thrombus volume, Fig. 6B shows little growth during the first 100 seconds, the curves start to deviate
significantly around 125 seconds reaching different levels of total thrombus volume between approximately 0.1 to 1.7𝑚3×10−3.

Anticipating on the results of the following settings, both plots in Fig. 6 also show the surrogate mean, std-based confidence
interval, and a box plot of the 25𝑡ℎ and 75𝑡ℎ percentiles. It can be observed that the surrogate model is able to correctly reproduce
the trend observed in the multi-constituent thrombosis simulations (gray plots).

FIGURE 6 Output variables for 120 thrombosis simulations (gray lines), the blue solid and dashed lines are the mean and
standard deviation of the surrogate model respectively, the box plots show the median and 25𝑡ℎ and 75𝑡ℎ percentiles of the
surrogate model predictions, the whiskers in the box plots the variability between the upper quartile and upper maximum and
the lower quartile and minimum of the surrogate model predictions. A) Occlusion percentage evolution in time B) Thrombus
volume in the computational domain in time.

3.2 PCE surrogate model training and thorough validation
In this paper, we aimed at obtaining a subtle balance between cost and predictive accuracy. We first carried out a preliminary
study to determine a very moderate number of simulations to build our training database in order to construct a metamodel
with small errors on various quantities. In addition, we were very drastic in our way of validating the metamodel by several
means. We relied on LOO cross-validation error. We have also pursued a generalization test on a sample that was not used
during training and that includes some extreme points (data points far away from the central tendencies of our training dataset).
By doing so, we have quantified the confidence in these predictions. Finally, as we will see in a later section, we have compared
our predictions with clinical data, cf. Section 3.4. We will describe in the following, the details of the various analyses.
To ensure that the parameter space 𝑿 was uniformly explored, a Sobol’ quasi Monte Carlo sequence was used to generate a
DoE matrix. This choice is based on the fact that the classic Monte Carlo method does not depend on the number of dimensions,
its convergence is slow and recent papers have shown that when applied to sensitivity analyses, Sobol’ sequences exhibited
faster convergence. While the observed benefit to convergence is moderate, Sobol’ sequences are computationally less expensive
to compute than Latin Hypercube Samples (LHS) and also have the benefit of being deterministic, which allows for better
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reproducibility of results. In addition, a preliminary comparison was done using the aforementioned sampling techniques (See
Supporting Information.) Then we computed the LOO error as a function of the training sample size using as QoIs the closure
time and the thrombus volume as defined in Section 2.3. (See Figure 7.) This was repeated for five surrogate models of increasing
complexity (increasing polynomial order 𝑝 with truncation parameter, 𝑞 = 1). Some readers may notice that some convergence
curves with fixed polynomial order do not exhibit monotonous decrease despite increase in the training dataset size. This is due to
the adaptive LARS approach, promoting sparsity by trimming the approximation basis. Small size basis (i.e. for low polynomial
order) are sometimes affected by this optimization, resulting in small error fluctuations. Except for these very few models, the
accuracy improved with increasing training size, reaching a point of diminishing returns at approximately 80-120 simulation.

In terms of model complexity, the best performance was found for polynomial order from 𝑝 = 2 and 3. Further increasing the
polynomial order was found to deteriorate accuracy, reflecting the limited sample size leading to overfitting. This motivated the
use of an adaptive approach that searches, for each time step, an optimal combination within given ranges, i.e. polynomial orders
𝑝 ∈ {1, 6} and truncation parameters 𝑞 ∈ {0.5 ∶ 0.1 ∶ 1}. This yielded lower error than fixed polynomial order and truncation
parameter approximations. In any case, it should be reminded that with more data the surrogate model would increase in
accuracy. Nevertheless, this pilot study demonstrated that 120 simulations were sufficient in order to reach reasonable accuracy
when combined with an adaptive polynomial approach.

FIGURE 7 Time-averaged leave-one-out (LOO) cross-validation error of the parametric models as a function of the train-
ing sample size and model complexity. A) closure percentage error, and B) Thrombus Volume error. Adaptive metamodeling
construction are more efficient than models with fixed complexity. They show reasonable accuracy for a budget of 120 full
thrombosis simulations.

When considering the closure percentage and the thrombus volume QoIs, a series of PCE meta-models were constructed,
one for each time step at which the QoI was saved during the simulations (for more information in time-dependent generalized
polynomial chaos the reader is referred to the work of Gerritsma et al.67). For the closure percentage the non-zero PCE coef-
ficients range from [1-25], on the other hand, for the thrombus volume QoI the range is [13-23]. To cross-validate the model
for each time step, 125 points were sampled using the quasi-random Sobol’ sequence, of which 120 points were used for the
training set to build the surrogate model and 5 points used as the test set. For these 5 points, we have made sure that the testing
data were sufficiently far away from the central tendency of the joint input distribution. The Mahalanobis distance was used to
quantify how far the cross-validation points are from the original training dataset (See Table 3). All the points are at least 3 stds
away from the mean of the training data-set, two of them are about 5 stds away. Five predictions using this methodology are
shown in Figure 8, the dots correspond to the thrombosis simulation, the solid line is the PCE surrogate and the shaded area is
the PCE confidence interval computed using the bootstrap technique [Marelli and Sudret68]. Producing a single prediction from
each PCE surrogate is not very realistic due to the small training database and adaptive procedure used. Therefore, a confidence
interval can be generated accordingly for each prediction. It is noteworthy that each surrogate model does not have the same
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selected polynomial approximation space (e.g. not same optimal order 𝑝opt), depending on the complex nature of the response
to the parameters randomness along time.

Point 121 122 123 124 125
MD 5.32 3.97 4.87 3.3 3.86

TABLE 3 Mahalanobis Distance (MD) between the cross validation points and the training dataset mean in terms of standard
deviations.

There are different approaches to combine polynomial chaos expansion and bootstrapping techniques. For the fast algorithm
approach used for a large training sample, the sparse polynomial basis identified by the LARS algorithm during calibration
is calculated only once from the available full experimental design, and bootstrapping is applied only to the final step, which
consists in a classic ordinary least-square regression on the sparse basis. The full bootstrapping approach, recommended for
smaller training sample, is more expensive but more accurate as it includes the estimation of the sparse PCE basis for each of the
bootstrapped experimental designs. In this paper, the second approach is followed and prediction confidence intervals (±2std)
are evaluated with 200 bootstrap replications. We notice that the simulations obtained with the full thrombus model do belong
to these confidence intervals. The latter are wider for the thrombus volume variation.

FIGURE 8 Cross validation on extreme events: generalization from PCE surrogate models (mean: triangles) compared to
thrombosis simulations not included in the training dataset (circles). The shaded areas, obtained thanks to bootstrapping tech-
nique, represent the (2-std) confidence intervals associated with the meta-models. Most of the thrombosis simulations fall within
the confidence intervals.

The accuracy of the PCE, evaluated by cross-validation with the LOO error criteria, remained for the occlusion percentage
output under 20% for most cases with only one time step at 30% error (at 𝑡 = 200 seconds). In the case of the thrombus volume
output the LOO error remained under 10% reaching its maximum value by the last time step of the simulation. We consider that
these errors showed that our surrogate was efficient considering that our initial space has 𝑑 = 15 dimensions and we only used
a moderate computational budget of 𝑁 = 120 simulations.

In conclusion, these results provided sufficient validation for our PCE approach to continue with the sensitivity analysis and
further applications.
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3.3 Sobol’ Indices
The first order and total Sobol’ indices for the 15 parameters computed using the closure percentage as QoI are shown in Fig. 9.
In order to scale the effect of each parameter, the first Sobol’ indices were multiplied by the variance computed through the
PCE approximation. Considering the first order indices, seven parameters have a significant impact in the range 50𝑠 < 𝑡 < 200𝑠
which is in line with the fact that most variations in the QoI are observed within this time range (see Fig. 6 A). The physical
significance of the parameters identified by the first Sobol’ indices is related to three main factors:

• Thrombus constitution. Resting platelet count (parameter 1) is the main constituent of the thrombus, therefore, it is
understandably influential in the closure percentage.

• vWF activity. The parameters 3, 8, 11, 12, and 14 (𝑣𝑊 𝐹𝑐 , �̇�𝑣𝑊 𝐹 , 𝑡𝑣𝑊 𝐹 , 𝑊 𝑖𝑐𝑟𝑖𝑡𝑒𝑓𝑓 , and 𝑣𝑊 𝐹 𝑐𝑟𝑖𝑡
𝑠 ) control the unfolding

dynamics of vWF and its subsequent impact in platelet deposition. The fact that these parameters were flagged signals the
important role of vWF in high shear rate thrombosis.

• Platelet-platelet adhesion. The parameter 6 (𝑘𝑎𝑎) is the rate of platelet to platelet adhesion which directly influences the
thrombus growth rate.

The Total Sobol’ indices which evaluate the total effect of an input parameter, including all variance caused by its interactions
with other parameters, are shown in Fig. 9 B. Significant effects for 11 out of 15 parameters are observed indicating non-
negligible parameter interactions. Interestingly large effects are observed specifically after 180 seconds even-though the QoI
shows little variation after this time. This could be explained by the high order approximations that were retained for these time
steps.

FIGURE 9 Sobol’ indices evolution over time for the QoI closure percentage. A) First order indices multiplied by the output
PCE variance. B) Total Sobol’ indices.

Figure 10 shows the first order indices multiplied by the PCE variance and the Total Sobol’ indices for the total thrombus
volume QoI. In this case, only six parameters showed significant contribution to the output variations mainly at the last time
steps which is in agreement with the behavior observed in the time evolution of the total volume QoI (see Fig. 6B). As in the
previous QoI, the parameters that were identified are related to the thrombus constitution, the rate of platelet adhesion and vWF
activity. These six parameters were also identified by the first Sobol’ indices for the closure percentage QoI. Parameter 8 (�̇�𝑣𝑊 𝐹 )
that regulates vWF unfolding is not found to be influential in this case; although, a small contribution in the middle run of the
thrombus formation is observed. This suggests that its role is only related to the initiation of the thrombus formation and not
the subsequent growth of the thrombus. This is corroborated by the large value of its Total Sobol’ index. (See Figure 10B.) The
other six parameters found to be influential by the first Sobol’ indices are also found to be influential considering their total
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Sobol’ indices. Parameters 9 and 7 (Δ�̇� and 𝑘𝑟𝑎) show a low but non-negligible impact, these parameters are related to direct
vWF activity and platelet deposition respectively.

FIGURE 10 Sobol’ indices evolution over time for the thrombus volume QoI. A) First order indices. B) shows the total Sobol’
indices.

3.4 Clinical Application: PFA-100® Closure Time
To investigate the practical relevance and the generalization of the current UQ framework, the surrogate model predictions
for three clinical scenarios were compared to reference clinical data: normal blood, thrombocytopenia, and vWF disease. The
PCE surrogate model was calibrated using the closure time of the PFA-100® as QoI as defined in Section 2.3. The full set of
thrombosis simulations (125) were used to compute the PCE coefficients. Three sets of 100,000 points (parameters) as defined in
Table 4 were drawn using the Monte Carlo sampling technique as implemented in the UQLab framework. The 13 supplementary
model parameters that do not appear in Table 4 were held constant, as defined in Table 2.

Case Parameter Distribution (mean, standard deviation)
Normal RP Resting platelet count  (300 × 103, 30 × 103) Plt 𝜇𝐿−1
vWFD vWFc (70 % of vWF concentration)  (700, 70) nmol m−3

Thrombocytopenia RP (50% of Normal Resting platelet count)  (150 × 103, 15 × 103) Plt 𝜇𝐿−1

TABLE 4 Definition of random parameters for the three cases.

Once the input databases were created for each case. The surrogate model was used to predict the 100,000 closure times for
each set of parameters. The probability distribution of the PCE closure times for each scenario is presented in Figure 11 (solid
red lines) superimposed with histograms derived from clinical data corresponding 172 patients, reported by Harrison et al.42.
It should be noted that for the vWFD and Thrombocytopenia cases, the data were consolidated, as closure times equal to 300
were not taken into account since they are the maximum limit of the coagulation test indicating that the coagulation test failed.
To facilitate the comparison a distribution was computed for the clinical data: a maximum likelihood estimate of a gaussian
distribution was computed for the physiological case (large enough sample) and a kernel fit was obtained for the vWFD and
thrombocytopenia cases (small sample). Even though the vWFD and Thrombocytopenia cases may not be statistically significant
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(𝑛 = 26 and 𝑛 = 6 respectively) it can be observed that the surrogate model captures well the trend observed in the coagulation
assay for the three cases; although for the thrombocytopenia case the PCE prediction lags the clinical data slightly.

FIGURE 11 Distribution of closure times for simulated and clinically reported PFA-100® A) physiological case, B) vWF
disease, and C) thrombocytopenia. Black circles along horizontal axes are the clinical data extracted from42, a blue histogram
was constructed using this data. The red line is the probability density function approximated from one hundred thousand
realizations of the PCE surrogate model, the blue dashed line in A shows a Gaussian approximation (with a Maximum Likelihood
Estimation MLE), and the green dashed lines in B and C are the kernel fits.

4 DISCUSSION

Substantial progress has been made over the past decade in mathematical models of thrombosis which has enabled numerical
simulation of a variety of clinically relevant thrombotic scenarios69,70,71. However, inherent uncertainties and assumptions of
thrombosis models limit their translation to clinical practice and medical device development. This study investigated the impact
of model parameter uncertainty in a thrombosis simulation by means of a polynomial chaos approximation. After extensive
validation of the polynomial approximation, a global sensitivity analysis of 15 model parameters was performed. Six parameters
showed significant influence in both quantities of interests considering their first Sobol’ indices. This is in line with a recent
study conducted by Melito et al.29 in which the authors found that only 4 of the 9 parameters in the model of Menichini7 were
influential for predicting volume fraction of thrombus in a backwards step. However, investigation of parameter interaction via
the total Sobol’ indices revealed influence of a subset of the 9 "non influential" parameters according to the first Sobol’ indices.
This suggest that simplification of the model must consider both first and total Sobol’ indices, lest it neglects the interdependence
of parameters.

Several limitations are acknowledged in the current study. First, the thrombosis model itself involves several approximations33,
in which blood is treated as a Newtonian fluid, and the roles of red blood cells and fibrin formation are not explicitly considered.
Yet, in reality, the closure time is likely to be influenced by RBC trapping within the clot, and possibly influenced by platelet
margination induced by RBCs. Second, a fixed inlet velocity boundary condition to avoid numerical instabilities observed in the
pressure driven case (more loyal to the PFA-100 system). The instabilities might be related to the PIMPLE algorithm, however,
a more detailed study is needed. Since a robust setup was needed for the sensitivity analysis simulations, the fixed velocity inlet
approach was used. In addition, the two methodologies yield very similar results (See Supplemental information). Third, a first
triage of parameters was perform selecting only 15 parameters to perform the sensitivity study. Even though this selection was
informed by our previous thrombosis studies48,33,49,41 it remains somewhat arbitrary. Furthermore, the parameters excluded in
this first triage step may have non-negligible parameter interactions with the 15 parameters selected. A possible way to better
select this set of parameters is to perform a screening global sensitivity analysis with the Morris method as in Méndez Rojano
et al.27. Fourth, the type of distribution and the magnitude of its variance that was assumed for the model parameters (10%) was
somewhat arbitrary and was applied to all the parameters equally. In future studies, each parameter should be assigned its own
characteristic standard deviation. In addition, the definition of closure time used in the simulations was based on 80% occlusion
of the orifice, whereas in reality it would be 100%. This was necessary due to the simulations reaching an asymptotic value of
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approximately 90% due to extremely high shear rates as the orifice diameter approaches zero. Finally, the clinical database for
normal blood was constructed with n=172 patients; for the vWFD and thrombocytopenia, only n=26 patients and n=6 patients
were available respectively. A larger sample size would improve the comparisons for vWFD and thrombocytopenia cases.

Despite its limitations, the PCE surrogate model demonstrated practical utility inasmuch as it permitted quantification of
the uncertainty associated with a large number of parameters of a thrombosis model with economical computational cost. By
contrast, it would have been very prohibitive to simulate all 300,000 sets of parameters with the full thrombosis model. Moreover,
it was shown that the adaptive surrogate initially calibrated for certain parametric variabilities was nevertheless also capable of
providing very reasonable predictions in parametric regions of lower probabilities. It is particularly noteworthy that despite the
fact that the parametric distribution of the normal clinical case was centered outside the training confidence interval (estimated
for this normal distribution as 1.3 times the RP mean training value = 280 × 103 Plt 𝜇 L−1), the surrogate model nevertheless
predicts very well the clinical observations.

In conclusion this study showed that a PCE surrogate model trained with high fidelity thrombosis simulation can reproduce
the trends observed in clinical data. These results encourage future studies using this methodology to investigate the influence
of anti-platelet agents to identify scenarios that could achieve a balance between the risk of thrombosis and bleeding.
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