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Abstract

Thrombus formation is one of the main issues in the development of blood-contacting medical de-
vices. This article focuses on the modeling of one aspect of thrombosis, the coagulation cascade, which
is initiated by the contact activation at the device surface and forms thrombin. Models exist repre-
senting the coagulation cascade by a series of reactions, usually solved in quiescent plasma. However,
large parameter uncertainty involved in the kinetic models can affect the predictive capabilities of this
approach. In addition, the large number of reactions of the kinetic models prevents their use in the
simulation of complex flow configurations encountered in medical devices. In the current work, both
issues are addressed to improve the applicability and fidelity of kinetic models. A sensitivity analysis is
performed by two different techniques to identify the most sensitive parameters of an existing detailed
kinetic model of the coagulation cascade. The results are used to select the form of a novel reduced
model of the coagulation cascade which relies on eight chemical reactors only. Then, once its parameters
have been calibrated thanks to the Bayesian inference, this model shows good predictive capabilities for
different initial conditions.

1 Introduction

The developement of medical devices in contact with blood has been increasing over the last years. Such
devices are used to treat cardiovascular or neurovascular disorders such as coronary artery diseases, heart
valve diseases or aortic/brain aneurysms. One of the main problems of blood-contacting devices is throm-
bus formation which can lead to device malfunction or thromboembolism [Mehra et al., 2014, Wilson and
Cruden, 2013]. Blood clotting in devices is regulated by a series of intertwined biological processes, such as
protein adsorption, platelet activity, complement system and coagulation reactions, as reviewed by Gorbet
and Sefton [2004]. These mechanisms appear due to the presence of the device whose artificial material lacks
the endothelial properties of the vessel. At the material surface, contact activation of factor XII (zymogen
of the coagulation cascade) takes place, initiating a cascade of enzymatic reactions [Yan et al., 2018] that
produce thrombin, a key coagulation enzyme that activates platelets and forms fibrin. At the same time,
platelet adhesion and activation can also occur at the device surface, as explained by Jaffer et al. [2015]. In
the last stage of the thrombus formation process, aggregated platelets and polymerized fibrin form a stable
clot that may hinder the device performance.

Computational fluid dynamics (CFD) has been used to study the flow on medical devices and evalu-
ate the risk of thrombosis [Yoganathan et al., 2004, Dumont et al., 2007]. A straightforward evaluation of
thrombosis risk can be performed using specific flow patterns, such as high shear stress yielding to platelet
activation [Alemu and Bluestein, 2007, Shadden and Hendabadi, 2013] or stasis which promotes coagulation
[De Biasi et al., 2015]. Approaches focusing only on flow properties do not allow to study the biochemical
processes, which play a major role in thrombus formation [Fogelson and Neeves, 2015]. More exhaustive
methods accounting for platelet activity, the coagulation cascade, clot growth and its interaction with the
flow have been developed for thrombus triggered by vessel injury [Leiderman and Fogelson, 2011, Yazdani
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et al., 2017]. However, only small computational domains x ∼ 100 µm can be considered due to the com-
plexity of these models. Since a straightforward application of complicated models is not possible in the
complex flow configurations linked to biomedical devices, reduced models accounting for platelet adhesion,
activation (by chemical and mechanical pathways) and clot-flow interaction have been developed [Taylor
et al., 2016, Wu et al., 2016]. Nevertheless, thrombin produced by the coagulation cascade triggered by the
contact system has not been considered in a model of thrombus formation in devices.

The contact activation system has already been considered in kinetic models of the coagulation cascade
[Chatterjee et al., 2010, Zhu, 2007]. The kinetic descriptions have been used in CFD models to study throm-
bin formation triggered by the device wall in a typical flow configuration by Méndez Rojano et al. [2018].
However, a straightforward coupling with platelet-based models is challenging due to the large number of
reactions present in the kinetic models and the large physical time that must be computed in a thrombus
growth process. Another issue is the large uncertainty in reaction rates due to non-standardized parameter
characterization or variations among different subjects [Danforth et al., 2009]. In addition, according to Link
et al. [2018] the use of Michaelis-Menten kinetics is questionable when enzymes and zymogens participate to
several reactions. In such cases, the use of mass action descriptions of complex formation and dissociation
may be more adapted to avoid any assumption on the reactions. Overall, the uncertainty related to the
kinetic models may lead to poor results in thrombin production as explained by Belyaev et al. [2018].

Parameter uncertainty and kinetic model reduction have been addressed for models of thrombus gen-
eration initiated by Tissue Factor exposure which is related to endothelial damage. Danforth et al. [2009]
performed a sensitivity analysis on the kinetic model of Hockin et al. [2002] to evaluate the sensitivity of
thrombin generation to the 44 reaction rates that are present in the model. The model sensitivity was as-
sessed using the one at time (OAT) methodology with linear spaced variations between 10 to 1000% of the
usual values of the reaction rates. The model outputs were evaluated at eight different instants which char-
acterize the different phases of thrombin generation (initiation, amplification and propagation). Danforth
and coworkers found that the model was especially sensitive to uncertainty in five parameters involved in the
formation of the TF = V IIa complex which takes place at the initial part of the coagulation cascade. The
authors suggested that improving the accuracy of the reaction rate measurement can improve the predictive
capabilities of the whole kinetic model. In a posterior work, Danforth et al. [2012] conducted a sensitivity
analysis of the initial concentrations of the eight coagulation factors involved in the model of Hockin et al.
[2002]. They found that variations in prothrombin and TFPI accounted for 16 % and 32 % of the modi-
fications of the model output respectively. Pairwise changes were also investigated by the authors, leading
to stronger variations. The authors observed that the pair ATIII with TFPI had the largest impact on
the results. Anand et al. [2008] performed a similar sensitivity analysis as Danforth et al. [2009] using the
model of Naidu and Anand [2014]. Their results showed that the generation of fibrin was most sensitive to
the rate governing the production of thrombin.

Link et al. [2018] recently proposed a methodology consisting of a tailored sensitivity analysis approach
using the screening technique of Morris [1991] combined with a more intensive global analysis technique.
The sensitivity analysis was performed for the detailed model of Fogelson et al. [2012]. Three quantities
of interest (QoI) related to thrombin were studied: the lag time, the maximum relative rate of generation,
and the final concentration. The analysis of Link et al. [2018] considers four cases of parameter variations:
variable initial concentrations levels of biochemical species, kinetic rate constants, biophysical and platelet
attributes and the combined effects of varying the parameters all together. Their results show that the
largest variations are observed when the combined effects of parameters variation yield to the largest effect
on coagulation. Among the three studies considering only individual variations, modifications on the kinetic
parameters had the largest effect on the production of thrombin.

In terms of model reduction, Wagenvoord et al. [2006] showed that a model with a small number of
reactions can reproduce the thrombin generation curve if it includes the basic mechanism of thrombin for-
mation: initiation, amplification and propagation. Papadopoulos et al. [2014] developed a minimal model
for thrombin formation based on experimental data including these essential mechanisms. Reduced-order
models allow computations in complex flow configurations. For instance, Ngoepe and Ventikos [2016] used
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the reduced model of Wagenvoord et al. [2006] to simulate thrombosis growth inside a cerebral aneurysm.

In the present work, a sensitivity analysis and a Bayesian inference method are used to reduce device-
related kinetic models. First, the kinetic model of Chatterjee et al. [2010] initiated by the contact activation
system is studied using a global screening technique that allows to identify the most sensitive parameters.
Then, a reduced chemical model triggered by contact activation of factor XII is proposed. The optimal
parameters of the reduced model are obtained using a data-driven Bayesian statistical framework to find the
optimal parameters used in the reduced model.

2 Methods

2.1 Plasma Samples and TGA

Thrombin generation assay (TGA) was used to measure the evolution of thrombin concentration in time after
coagulation was triggered by the contact activation system. Developed by Hemker et al. [2003], the Calibrated
Automated Thrombogram (CAT) is a test mainly used in hemostasis research to study the hemostatic profile.
This method is time-consuming and suitable only for a small number of samples when compared to routine
clinical tests which assess the first traces of thrombin (after coagulation is triggered) about 12 seconds for
Quick Time (QT) or 32 seconds for Activated Partial Thromboplastin Time (APTT) for a normal plasma.
In contrast, TGA assesses thrombin generation until 60 minutes and allows a better characterization of
the coagulation cascade throughout all its phases: initiation amplification and propagation. Any traces of
thrombin will cleave to a specific substrate Z-Gly-Gly-Arg-AMC into a flurogenic form, detected by the
thrombogram.

Samples: Biological assays were performed with the
Pooled Normal Plasma (PNP R©) [Cryopep, Montpellier France] which consists of pooled citrated platelet poor
plasmas (PPP) from healthy donors to avoid inter-individual physiological variations of clotting factor levels.
The PNP was diluted with prothrombin immuno-deficient plasma whose qualified activity was lower than 1%
[Siemens Healthcare, Erlangen, Germany] in order to obtain different final prothrombin concentrations. Silica
was used to trigger the coagulation cascade, mixed with rabbit cephalin in STA-PPT A [Stago, Asnieres-
sur-Seine, France].

Calibrated automated measurement of thrombin generation: Thrombin generation was determined
in PPP using Fluoroscan Ascent (Flucakit, Thrombinoscope, Synapse BV, Maastrich, The Netherlands) ac-
cording to the method described by Hemker et al. [2003]. 80 µL of plasma were mixed with 20 µL of
STA-PPT A and 20 µL of fluorescent reagent, FlucaKit. This reagent contains calcium chloride (necessary
to trigger the coagulation cascade) and a mixture of fluorogenic substrate (Fluo-Substrate) and FluoBuffer.
Thus, fluorescence intensity was detected at wavelengths of 390 nm (excitation filter) and 460 nm (emission
filter), every 20 seconds. Each individual sample is analyzed with a thrombin calibrator as reference for a
stable thrombin activity of approximately 600 nM. The calibrator enables the conversion of the fluorescence
signal into thrombin concentration. The signal is treated to correct inner filtering effects, substrate con-
sumption and abnormal plasma color. Analyses were conducted, on Immulon 2HB round-bottom 96-well
plates (Stago - Asnières-sur-Seine, France).

2.2 Detailed coagulation model

Sensitivity analysis is performed on the model introduced by Chatterjee et al. [2010]. The model includes
37 reactions and 63 reaction rates and features:

• Initiation by the contact activation system considering factor XII auto-activation, reciprocal activation
(by Kallikrein) and auto-hydrolysis (by factor XIIa),

• Extrinsic and common pathways following the model of Hockin et al. [2002],
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# Reaction Forward M−1s−1 Reverse s−1 Forward s−1

1 Xa + V II → Xa + V IIa k1 = 1.3 × 107

2 IIa + V II → IIa + V IIa k2 = 2.3 × 104

3 II +Xa → IIa +Xa k3 = 7.5 × 103

4 IIa + V III → IIa + V IIIa k4 = 2.0 × 107

5 V IIIa + IXa ↔ IXa = V IIIa k5 = 1.0 × 107 k6 = 5.0 × 10−3

6 IXa = V IIIa + X ↔ IXa = V IIIa = X →
IXa = V IIIa +Xa

k7 = 1.0 × 108 k8 = 1.0 × 10−3 k9 = 8.2

7 V IIIa ↔ V IIIa1 · L + V IIIa2 k10 = 6.0 × 10−3 k11 = 2.2 × 104

8 IXa = V IIIa = X → V IIIa1 · L + V IIIa2 +
X + IXa

k12 = 1.0 × 10−3

9 IXa = V IIIa → V IIIa1 · L + V IIIa2 + IXa k13 = 1.0 × 10−3

10 IIa + V → IIa + V a k14 = 2.0 × 107

11 Xa + V a ↔ Xa = V a k15 = 4.0 × 108 k16 = 0.2

12 Xa = V a + II ↔ Xa = V a = II → Xa =
V a +mIIa

k17 = 1.0 × 108 k18 = 103 k19 = 63.5

13 Xa = V a +mIIa → Xa = V a + IIa k20 = 1.5 × 107

14 Xa + TFPI → Xa = TFPI k21 = 9.0 × 105 k22 = 3.6 × 10−4

15 Xa + ATIII → Xa = ATIII k23 = 1.5 × 103

16 mIIa + ATIII → mIIa = ATIII k24 = 7.1 × 103

17 IXa + ATIII → IXa = ATIII k25 = 4.9 × 102

18 IIa + ATIII → IIa = ATIII k26 = 7.1 × 103

19 BocV PRMCA + IIa → BocV PRMCA = IIa k27 = 1.0 × 108 k28 = 6.1 × 103 k29 = 53.8

20 XII → XIIa k30 = 5.0 × 10−3

21 XIIa +XII ↔ XIIa = XII → XIIa +XIIa k31 = 1 × 108 k32 = 750 k33 = 3.3 × 10−2

22 XIIa + PK ↔ XIIa = PK → XIIa +K k34 = 1 × 108 k35 = 3.6 × 103 k36 = 40

23 XII +K ↔ XII = K → XIIa +K k37 = 1 × 108 k38 = 45.3 k39 = 5.7

24 PK +K → K +K k40 = 2.7 × 104

25 K → Kinh k41 = 1.1 × 10−2

26 XIIa + C1inh → XIIa = C1inh k42 = 3.6 × 103

27 XIIa + ATIII → XIIa = ATIII k43 = 21.6

28 XI + IIa ↔ XI = IIa → XIa + IIa k44 = 1 × 108 k45 = 5 k46 = 1.3 × 10−4

29 XIIa +XI ↔ XIIa = XI → XIIa +XIa k47 = 1.0 × 109 k48 = 200 k49 = 5.7 × 10−3

30 XIa +XI → XIa +XIa k50 = 3.19 × 106

31 XIa + ATIII → XIa = ATIII k51 = 3.2 × 102

32 XIa + C1inh → XIa = C1inh k52 = 1.8 × 103

33 XIa + α1ATIII → XIa = α1ATIII k53 = 1.0 × 102

34 XIa + α2ATIII → XIa = α2ATIII k54 = 4.3 × 103

35 XIa + IX ↔ XIa = IX → XIa + IXa k55 = 1.0 × 108 k56 = 41.0 k57 = 7.7

36 IXa +X ↔ IXa = X → IXa +Xa k58 = 1.0 × 108 k59 = 0.64 k60 = 7.0 × 10−4

37 Xa + V III ↔ Xa = V III → Xa + V IIIa k61 = 1.0 × 108 k62 = 2.1 k63 = 0.023

Table 1: Kinetic parameters and coagulation reactions used in the simulations. The model of Chatterjee
et al. [2010] was adapted to the experimental conditions detailed in Section 2.1.

• Inhibition including Antithrombin (ATIII), Kallikrein inhibitor Kinh and C1 inhibitor C1inh.

The TGA experimental data generated in our laboratory was use as a test case for the model of Chatter-
jee et al. [2010] with some modifications related to our experimental setup. The inhibition by corn trypsin
inhibitor was suppressed since it was not used. The initial trigger reaction activation of factor XII (reaction
20) was modified, the original value of Chatterjee et al. [2010] being fitted to their specific experimental
framework. Fibrin related reactions were not included in the model to reduce the computational cost of the
model when performing the sensitivity analysis. The reactions related to factor X and factor IX activation
by factor V IIa were deleted because those reactions referred to the non-physiological recombinant factor
V IIa [Komiyama et al., 1990] (these reactions are numbered 48 and 49 in Chatterjee et al. [2010]). The
prediction of the resulting model is plotted in Fig. 1 in dash-dotted line. It was observed that the model
systematically overestimates the lag time. In order to improve the baseline comparison between experiments
and model predictions, the kinetic rates k47 and k49 were augmented by a factor of 10 with respect to the
values reported by Chatterjee et al. [2010]. The result is plotted in Fig. 1 as solid line and compares well
with the experimental data. All the reactions and the baseline values of the reaction rates are reported in
Table 1. Note that these modifications drastically improve the numerical-experimental comparison in the
thrombin generation test cases considered in this study.

A system of ordinary differential equations (ODE) can be written from the biochemical reactions of the
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kinetic model (Table 1). The ODE system writes:

dCi
dt

= Ri (1)

where Ci is the concentration of species i and Ri is the source term which is obtained by applying the law
of mass action to the coagulation reactions of Table 1. As an example the source term of Kininogen K is
developed as:

dCK
dt

=− k41CK − k37CXIICK + (k38 + k39)CXII=K

+ 2k40CPKCK + k36CXIIa=PK

(2)

The solution of the system is computed using an integration Runge-Kutta scheme of the 4th order. This
numerical scheme was implemented in the in-house CFD solver YALES2BIO1. YALES2BIO has already
been used in coagulation problems by Méndez Rojano et al. [2018] and other cardiovascular flows in micro
[Sigüenza et al., 2017, Lanotte et al., 2016] and macro [Chnafa et al., 2016, Zmijanovic et al., 2017, Sigüenza
et al., 2018] scale applications.
Table 2 shows the initial concentrations used in the numerical simulations which correspond to the initial
conditions of the thrombin generation assay.
In addition to the concentrations of species, which are patient-specific, the coagulation model is governed by
63 reaction rates (see Table 1). The reaction rates are derived from reactions observed under experimental
conditions of saturating phospholipid concentration. Most of the kinetics models are build upon reaction
rate values reported in literature [Jones and Mann, 1994, Zhu, 2007, Zarnitsina et al., 1996]. Additional
fitting is in general required due to non-physiological conditions in which some parameters are derived or
extensively modified proteins which are used to obtain the parameter value [Hockin et al., 2002]. For this
reason, reported values in different kinetic models sometimes present large variation. For instance, the
reaction rate of factor XI activation can be found in literature with a difference up to 5 orders of magnitude
as highlighted by Belyaev et al. [2018].

Factor Initial Condition [nM]

V II 6.67
V IIa 0.667
X 106.67
IX 6.0
II 933.0
V III 0.4667
V 13.33

TFPI 1.667
ATIII 2267.0
XII 226.7
PK 300.0
C1inh 1667.0
XI 206.7

α1ATIII 30000.0
α2ATIII 667.0

BocVPRMCA 6670.0

Table 2: Factors concentrations based on TGA (concentrations are calculated after sample mixing with
fluorescent reagent and using the values reported by Cryopep, Montpellier France) used as initial conditions
in the numerical simulations.

Figure 1 shows the numerical and experimental data. The numerical set up here presented was used as a
nominal reference for the sensitivity analysis. A reasonable agreement between the experimental TGA and
the kinetic model of Chatterjee et al. [2010] was obtained.

2.3 Global Sensitivity Analysis by Morris screening

The objective of the present sensitivity analysis is not to precisely quantify the influence of the kinetic
parameters on coagulation as in Danforth et al. [2009] or Link et al. [2018], but rather to identify the most
influencing kinetic rates. This is a necessary step in order to gain more insight into the model and use this

1http://www.math.univ-montp2.fr/∼yales2bio/
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Figure 1: Experimental results of thrombin generation assay ( ) and numerical simulation ( ) using the
kinetic scheme of Table 1 with the initial conditions of Table 2. The numerical result without modifying k47
and k49 is also shown ( ).

knowledge to build up the reduced kinetic model of Section 3.2. The screening method of Morris [1991]
allows a fast exploration of a model through the discretization of the input parameters. This type of method
is well suited to models with many parameters and a good compromise between accuracy and efficacy has
been reported [Iooss and Lemâıtre, 2015]. The Morris method was also recently used by Link et al. [2018],
who highlighted its ability to rank the most sensitive parameters of a complex thrombosis model.
The general idea of the Morris analysis is to calculate a number of elementary effects for each input parameters
and to compute basic statistics to identify the most sensitive parameters. In order to compute the elementary
effects a discrete grid is built on the input variables and explored with an efficient sampling technique. In
the current work, the python module SALIB 2 that follows the optimized version of the Morris method
by Campolongo et al. [2007] was used. We considered only the case of variations on the kinetic rates as
they produced the largest change in the production of thrombin as observed in Link et al. [2018]. The
practical steps that were performed to conduct the analysis using the model of Chatterjee et al. [2010] are
the following:

1. Choice of discrete grid and sampling: a discrete grid on the p = 63 input variables is built with
l probability levels uniformly distributed between [0, 1]. In this analysis 10 levels of discretization
were used. Inside the input domain a number of trajectories r has to be determined in order to
cover the input parameters space in an efficient manner. In the original method of Morris [1991], the
trajectories starting point is chosen randomly, then consecutive one-at-a-time increments are performed
in the discrete grid with a random direction. To perform an optimal coverage of the input space, the
optimized strategy of Campolongo et al. [2007] was preferred in this analysis. In the optimal strategy,
the dispersion of the starting points is maximized through the generation of several Morris trajectories
(in this case rmax = 500). Then the most spread optimal trajectories are kept, for this case r = 10.
The total number of experiments is then defined by M = r(p+1) thus, for the current model, M = 640
TGA simulations were required.

2. Mapping of parameters to actual distribution: once the sampling is performed a Design of Experiment
(DoE) matrix with parameters between 0 and 1 is obtained. A quantile function is applied to transform
the parameters to their actual values. This is a common practice in several screening strategies Saltelli
et al. [2004]. In our analysis, a log-uniform probability distribution is used for all the input parameters.
This choice was motivated by the large parameter variations reported in the literature [Hemker et al.,
2012]. In addition, the actual distribution for each reaction rate is not available in literature. The

2http://salib.readthedocs.io/en/latest/api.html
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quantile function used writes

Q(zi) = cinf,i

(
csup,i
cinf,i

)zi
(3)

where [cinf,i; csup,i] is the distribution support and zi is the sampled value of the i parameter (between
[0,1]). To guarantee that the mean µi of the sampled parameters coincides with the nominal input value
ki, the superior and the inferior support values must be estimated. To do so, the support ratio β =
csup,i
cinf,i

is introduced in the log-uniform mean expression µi = (csup,i − cinf,i)/(log(csup,i)− log(cinf,i)).

Imposing µi = ki then leads to cinf,i = kilog(β)
β−1 and csup,i = βcinf,i. In the current analysis, β was set

equal to 100 which translates in parameters variation of about 4.5%−450% of each parameter nominal
values. Two trajectories in the (k3, k7) plane are displayed in Figure 2 to illustrate the method.
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Figure 2: 2D parameter grid, the levels are mapped using the log uniform distribution. Two trajectories are
shown as an ilustration of the OAT random advancement.

3. Solution with YALES2BIO and Quantities of Interest (QoI) post-processing: The DoE simulations
were performed using YALES2BIO with a fixed time step of ∆t = 1×10−4 s. Post-processing included
the extraction of the QoI from the thrombin formation curve. The QoI used in the sensibility analysis
are shown in Fig. 3. The five QoI are:

(a) t(IIa=10.0nM) ≡ tlag: the instant at which the thrombin concentration reaches 10 nM,

(b) the maximum value of thrombin concentration max(IIa),

(c) the ascending slope m1 defined from the lag point (tlag,IIa = 10.0nM) and the maximum peak
point (tmax,max(IIa)),

(d) the descending slope m2 defined with the maximum peak point (tmax,max(IIa)) and the descend-
ing point at (td, IIa = 10 nM) where td is the instant at which the concentration of thrombin
falls bellow 10 nM,

(e) endogenous thrombin potential (ETP) which stands for the area under the curve representing the
total thrombin produced.

4. Elementary effects and sensitivity indices: the OAT incremental ratios allow to compute elementary
effects of each parameter following Campolongo et al. [2007]:

Eij =
f(Xi

j + δi)− f(Xi
j))

δi
(4)
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where X is the input parameter, j is the index of the input parameter, i stands for the repetition, δi
is the variation value and the function f represents any of the five QoI from the thrombin generation
curve. Two sensitivity coefficients are calculated [Campolongo et al., 2007]:

• µ∗
j = 1

r

∑r
i=1 | Eij | is the mean of the absolute value of the elementary effects

• σj =
√

1
r

∑r
i=1

(
Eij − 1

r

∑r
i=1E

i
j

)2
is the standard deviation of the elementary effects.

From the sensitivity indices distribution a quick identification of three different groups of parameters
can be done depending on their impact on the QoI:

• parameters with little or no effect (low µ∗
j and σj),

• parameters with a strong linear dependency or an additive effect (large µ∗
j ),

• parameters with non-linear and/or interaction effects (large σj),

With this classification the most sensitive parameters can be identified. In some cases, the sensitivity analysis
can identify predominant reactions and contribute to reduce the complexity of the models, as discussed in
Section 4.

0 100 400 600

0
10 nM

0.5

1

·10−7

time (s)

I
I a

(M
)

ETP

tlag tmax

max(IIa)

td

m1 m2

Figure 3: Variables used in the sensibility analysis: tlag, max(IIa), m1, m2, ETP.

2.4 A reduced model of coagulation initiated by contact activation

Wagenvoord et al. [2006] proposed a minimal reaction mechanism of thrombin formation triggered by factor
V IIa. The reduced model included reactions of the extrinsic and common pathways and can thus be applied
in cases were TF is the initial mechanism. In this model, 14 parameters including 9 kinetic constants and 5
initial concentrations of coagulation factors must be optimized in order to correctly reproduce experimental
trends of thrombin formation. It is worth mentioning that in reduced kinetic models, the species maybe
fictive species and the optimal initial concentrations of factors are not representative of the actual concen-
trations in blood plasma. However, these models have been successful to reproduce thrombin formation
triggered by the extrinsic pathway. In the current work a reduced model for thrombin production initiated
by contact activation is proposed. The minimal reaction mechanisms consist of 5 reactions that are trig-
gered by activation of factor XII, the reactions are listed on Table. 3. The model includes 8 reaction rates
and 8 chemical species. The amplification and propagation phases are performed by the auto-activation
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XII XIIa

II

IIa

V

Va

ATIII ATIII = IIa

k1 Km2 kcat2

Km3 kcat3

Km4 kcat4

k5

Figure 4: Reduced model for thrombin generation triggered by the contact activation system. The notation
Kmi, kcati is used for reaction following MichaelisMenten kinetics while ki are first order reactions.

loop through the activation of factor Va, this mechanism also appearing in the model of Wagenvoord et al.
[2006]. Finally, inhibition of thrombin is due to the activity of ATIII. Figure 4 shows a schematic of the
model with the corresponding kinetic parameters. The kinetic model Ċ =M(C, t) can be represented by a

# Reaction Km M kcat s−1 k s−1

1 XII → XIIa k1
2 XIIa + II → IIa +XIIa Km2 kcat2
3 IIa + V → IIa + Va Km3 kcat3
4 Va + II → Va + IIa Km4 kcat4
5 IIa +ATIII → IIa = ATIII k5

Table 3: Reduced kinetic model for the coagulation cascade showed in Fig. 4. Reactions 1 and 5 are first
order reaction, reactions 2, 3 and 4 follow MichaelisMenten kinetics.

system of ordinary equations that can be solved using a classical numerical scheme. The ODE system writes:

ĊXII

ĊXIIa

ĊII

ĊIIa

ĊV

ĊV a

ĊATIII

ĊATIII=IIa



=



−k1CXII

k1CXII

kcat4CVaCII
Km4 + CII

− kcat2CXIIaCII
Km2 + CII

− k5CIIaCATIII
kcat2CXIIaCII
Km2 + CII

+
kcat4CVaCII
Km4 + CII

− k5CIIaCATIII

−kcat3CIIaCV
Km3 + CV

kcat3CIIaCV
Km3 + CV

−k5CIIaCATIII

k5CIIaCATIII


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Parameter values should be optimized to compute thrombin formation with a reasonable agreement with
reference data. Here we use the experimental data generated by TGA triggered by contact activation.

2.5 Bayesian parameter inference

The proposed reduced-order coagulation model depends on a set of parameters which need to be calibrated.
The idea behind this parametric calibration is to adjust the unknown parameters in order to lower the dis-
crepancy between the numerical prediction and some indirect and imperfect (experimental) observations of
the system. This is a computational burden because the model is nonlinear and brings in unknown relatively
high-dimensional parameter spaces. Model inversion in the presence of measurement errors must typically
take advantage of some type of regularization (e.g., Tikhonov regularization) in order to recover the exis-
tence and uniqueness of solutions or a robust optimization method [Ashyraliyev et al., 2009]. A potentially
more natural setting is the Bayesian statistics. The Bayesian statistical framework can be explained as a
systematic use of probability dedicated to decision-making when using a model with uncertain parameters.
It is advantageous because it allows the specification of a prior distribution which expresses probabilistically
what is known about the parameters before observing the data. In this study, a Bayesian inference technique
is used to obtain the optimal parameters involved in the model that allow to capture the thrombin formation
curve. The parameters to be inferred are the 8 reactions rate and the initial concentrations of species XII,
V and ATIII, i.e. a total of 11 quantities.
This approach is used in inverse problems and relies on posterior sampling techniques. Thus, a prior distri-
bution of the parameters to be calibrated is necessary, so that the estimation process delivers a probabilistic
characterization of the parameters. In this work, a Markov-Chain Monte-Carlo algorithm is used considering
the input parameters as random quantities that are sampled according to the posterior distribution.

A significant amount of literature exists on the Bayesian inference method. In the following, the work of
Xiu [2010], Birolleau et al. [2014], Andrieu et al. [2003] is referenced to recall the main steps of the parameter
inference. In the Bayesian approach, a vector of unknown parameters is considered

k = (k1,Km2, kcat2,Km3, kcat3,Km4, kcat4, k5,

XIIinit, Vinit, ATIIIinit).
(5)

The parameters are treated as random variables with a prior density distribution πprior(k). In the current
inference procedure, independent log-uniform distributions were assumed as prior distributions for all the
parameters. Observations of the QoI are necessary to perform the inference process. In this application,
the observed variables d ∈ Rnd are the experimental measurements of the thrombin generation assay or the
numerical results of the detailed kinetic model at nt discrete time instants CIIa(nt).

The Bayesian formula, involving conditional probabilities, can be applied as in Birolleau et al. [2014] to
obtain the parameters posterior distribution considering the reduced model, the prior parameters distribution
and the experimental observations

πpost(k|d) ∝ π`(d|k)πprior(k), (6)

where π`(d|k) is the likelihood function that combines the experimental data with the forward model and
πpost(k|d) the desired posterior density of the parameters. The initial concentration of prothrombin is not
inferred, thus the physiological condition of pool plasma is used in the reduced kinetic model, II = 933.0 nM.
Following Xiu [2010] assuming additive measurement noise ε and mutually independent random variables,
one can write:

d = G(C) + ε = G (M(k, t)) + ε, (7)

where M : Rnk × Rnt → RnC×nt is the deterministic forward model, G : RnC×nt → Rnd is an observation
operator that relates the model solution C with the reference discrete concentration of thrombin d and πε
is the prescribed noise distribution of ε. The observation operator G can be any operation that transforms
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the model outputs into the QoI used in the inference process. In the current case the operator G only selects
the thrombin concentration CIIa from the output concentration vector C of the forward model M. More
specifically, in our case, the likelihood function can be expressed as follows:

π`(d|k) =

nd∏
i=1

ε (di − Gi(M(k, t))) . (8)

where the index i is used to refer to the experimental and numerical observations at the same nd time
instants. The likelihood function contains a stochastic source term that must encompass the response of the
deterministic kinetic model over the support of πpost(k|d). Since the posterior distribution does not have in
this case an analytic closed expression, posterior moments, expectations or maximum a posteriori values must
be estimated via sampling methods such as Markov chain Monte Carlo (MCMC) as explained in Andrieu
et al. [2003]. The posterior sampling of the parameters is handled thanks to a standard Metropolis-Hastings
scheme [Hastings et al., 2017]. In our case, it requires many model realizations (about twenty thousand),
which is not penalizing as the reduced-order model is not computationally demanding.

3 Results

3.1 Sensitivity Analysis of the full coagulation model

The first aspect of interest is the robustness of the detailed coagulation model of Chatterjee et al. [2010]
initiated by contact activation. Figure 5 shows the results of the sensitivity analysis using the screening
Morris method for each quantity of interest. The basic statistics of the elementary effects σj and µ∗

j are
computed using the thrombin concentration of the 640 simulations. An arbitrary threshold of 30% of the
largest value of both sensitivity indices is used to keep apart the sensitive parameters.

The important parameters identified for the time lag tlag (Fig. 5a) belong to the intrinsic pathway; acti-
vation of factors IX (reaction 35) and XI (reaction 29) have large impacts on tlag. The parameters relevant
to max(IIa) are reactions rates involved in the activation of factor II (Fig. 5b). In addition, thrombin
inhibition due to ATIII presents a large influence on the maximum value of thrombin. The ascending slope
m1 (Fig. 5c) shows a large influence to reaction rates involved in reaction 12 which is formation of mIIa
by the Prothrombinase complex. Furthermore, reaction rates involved in the intrinsic pathway, activation
of factors, XIa, IX, X and V III, showed to be important for m1 for instance. The descending slope of
thrombin evolution m2 (Fig. 5d) is mostly influenced by the thrombin inhibition activity of ATIII and by
the production of mIIA and IIa in reactions 18 and 20, respectively.

Finally, the results on ETP (Fig. 5e) show that the most influential parameters are involved in the in-
hibition activity of ATIII by means of complex formation with IIa and mIIa. Reaction rate k20 which is
involved in the conversion of mIIa into IIa is also relevant to ETP. The histogram shows that the conversion
of mIIa into IIa determined by k20 is relevant to all the QoI. In a similar way, inhibition activity by ATIII
due to parameter k26 is important for 4 QoI, excluding only tlag. Six reaction rates are sensitive to at least
three QoI, the majority of these parameters are involved directly in the production of IIa with the exclusion
of parameter k60 which is involved in the activation of factor X by IXa.

The parameters identified by the sensitivity analysis are consistent with the nature of the QoI. It is im-
portant to note that these results were verified using a very different strategy for global sensitivity analysis.
In this case, influential parameters were identified thanks to their first-order Sobol’ indices [Sobol’, 2001].
Sobol’ indices are a variance-based diagnostic method of global sensitivity analysis that can identify the
parameters that cause large variations on the output of a given model. While those indices may be evaluated
with Monte-Carlo sampling type method, they are here approximated from a surrogate polynomial approx-
imation of each QoI. These polynomial approximation were built from level-3 Stroud quadrature sampling
via
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j ) are

considered relevant. A histogram showing how many QoI are sensitive to each parameter is also shown
(bottom right).
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numerical projections on Legendre first-order orthogonal polynomials of k [Xiu, 2010]. In this case, only 126
simulations were performed. Figure 6 shows the Sobol’ coefficients of the 63 parameters for tlag. The pa-
rameters marked with a cross are the parameters with large variance. In fact, a remarkable consistency with
the results from the Morris method is observed for all the QoI (results for the 4 remaining QoI are not shown).
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Figure 6: Sobol’ coefficients of the 63 parameters for tlag calculated with 126 Stroud data points, with
Legendre Polynomials. Coefficients marked with x are responsible for 80% of the output variance

3.2 Reduced model for thrombin generation

Whatever the confidence we have in a coagulation model, it can only be used in CFD if its computational
cost remains tractable. As a result, model reduction is particularly useful to build coagulation models with
a limited number of species. Of course, such models involve new parameters whose values need to be deter-
mined using reference data sets.

Eight thrombin generation assays initiated by contact activation were conducted to obtain the data sets
relevant to thrombin. The mean of these thrombin formation curves was used to perform the Bayesian
inference assuming a 4 % of observation uncertainty. Optimal parameters obtained after 20, 000 MCMC
(Metropolis-Hastings sampling algorithm) iterations are listed in Table 4.

Figure 7 shows the experimental data and the numerical results using the Bayesian optimal parameters
in the reduced coagulation model. Numerical results using the Bayesian optimal parameters aligned well
with TGA experimental data.

To evaluate the predictive capabilities of the proposed reduced model, the initial condition of factor II
was varied. Figure 8 shows both the numerical and TGA results for three prothrombin concentrations. The
numerical results reproduce fairly well the trends of thrombin formation, demonstrating the good predictive
capabilities of the reduced model using the Bayesian optimal parameters. The three cases correspond to
the physiological condition CII = 933.0 nM, 50% and 15% of the physiological values, respectively. It can
be noticed that in both cases at low prothrombin concentrations are shifted with longer lag times than the
TGA data. In addition, the amplitude of the IIa curves is, in both cases, smaller than the experimental
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# k optimal
1 k1 6.4× 10−3

2 kcat2 8.21
3 km2

8.95× 10−9

4 kcat3 3.5× 10−3

5 km3
2.0× 10−9

6 kcat4 4.98
7 km4 8.25× 10−7

8 k5 7.79× 10−3

9 CXII 9.36× 10−11

11 CV 6.2× 10−9

12 CATIII 1.665× 10−6

Table 4: Optimal parameters obtained from Bayesian inference; (here taken as the statistical mode values)
the initial concentration of prothrombin CII = 933.0 nM is not infered.
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Bayes optimal

Figure 7: Mean of the eight TGA data sets for physiological data and numerical thrombin formation using
the reduced model (Fig. 4) with optimal parameters from Bayesian inference. The error bars represent the
variance of the TGA data sets. The optimal parameters were obtained after 20000 MCMC iterations.

results.

The inference process was also repeated with a different set of reference data using the numerical data
from the detailed model of Chatterjee et al. [2010] assuming an uncertainty on thrombin concentration of 4
%. Table 5 shows the values of the inferred parameters. This approach can be applied to more general cases
in which the experimental conditions differ from the TGA samples previously presented.

Figure 9 shows the thrombin generation curves using the inferred parameters of Table 5. A lag time
between the model of Chatterjee et al. and the reduced model is observed for the case of 15% prothrombin
initial concentration. A good trend is however observed in the reference and 50% cases.
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Figure 8: Experimental TGA and numerical data using the reduced model with optimal parameters of
Table 4 for a range of factor II initial concentrations, 100% =physiological PPP concentration, 50%, 15%)

# k optimal
1 k1 1.2× 10−3

2 kcat2 0.28
3 km2 3.72× 10−7

4 kcat3 7.7× 10−3

5 km3
6.4× 10−10

6 kcat4 7.01
7 km4

9.54× 10−7

8 k5 9.88× 103

9 CXII 7.91× 10−11

11 CV 1.8× 10−8

12 CATIII 1.977× 10−6

Table 5: Optimal parameters obtained from Bayesian inference using the numerical data of the detailed
model of Chatterjee et al. [2010]. The initial concentration of prothrombin CII = 933.0 nM is not infered.

4 Discussion

In this work, two kinetic models of the coagulation cascade initiated by contact activation with a different
level of complexity are used: a full reference model from the literature and a reduced model introduced here
for the first time. First, the Morris [1991] method for sensitivity analysis is applied to the existing detailed
model of the coagulation cascade initiated by the contact activation system. This screening technique allowed
the identification of the parameters that have a significant impact on the model QoI’s. The kinetic rates that
had the largest impact on the time before the reactions take up tlag are involved in the intrinsic coagulation
pathway (k57, k55, k60, k56, k48, k49). Interestingly, the reaction rate k30 which is implicated in the contact
activation of factor XII does not have a significant effect on tlag, thus suggesting that its role is only to
trigger the cascade of reactions. This results are consistent with the numerical results of Méndez Rojano
et al. [2018] in which a parametric study on the activation rate of factor XIIa showed a limited impact on
thrombin formation. This effect may explain the difficulties of developing a full non-thrombotic material
since reducing the contact activation rate does not help to reduce the thrombin concentrations levels.
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Figure 9: Numerical results of the detailed model of Chatterjee et al. [2010] and numerical data using
the reduced model with optimal parameters of Table 5 for a range of factor II initial concentrations,
100% =physiological PPP concentration, 50%, 15%)

The ascending slope m1 is particularly sensitive to k50 which is involved in the auto-activation of factor
XI. In addition parameters k61 and k63 participating in the formation of thrombin and activation of factor
V III showed large impact on this QoI. For the other quantities max(IIa), m2 and ETP, the reaction rates
that were identified correspond to reactions that are directly involved in the production of thrombin or the
inhibition activity of ATIII (k26, k20, k23, k24, k18, k19).

To verify the results, another sensitivity analysis relying in the Stroud sampling quadrature and the
Sobol’ indices was performed and the results were qualitatively confirmed for all the QoI’s. In the histogram
showed in Fig. 5, parameter k20 was identified to be important for all the QoI. Reaction rate k26 is sensitive
to four QoI except for tlag. These findings align well with the sensitivity study of Danforth et al. [2009] on
the coagulation model triggered by TF = V IIa. Danforth and coworkers found that the thrombin formation
levels were sensitive to variations on reaction rates k26 and k20. Many reaction rates identified by Danforth
participate in the initiation phase of the extrinsic pathway. In the current work reactions rates k57, k56 and
k55 participating in the intrinsic system have a considerable impact on the QoI’s tlag and m1. Finally, six
reactions rates were found to be important to three output variables, k18, k19, k24 which are involved in the
production and inhibition of mIIa and k60 which participates in the activation of factor X by IXa. A better
experimental characterization of these six reactions may lead to an improvement in the robustness of the
model. We emphasize that other uncertainty quantification techniques more accurate than Morris method
also exist for a moderate number of random parameters [Bijl et al., 2013]. However, the parameters identi-
fied in the current work can be used to perform a more accurate sensitivity analysis on the most important
parameters selected thanks to the Morris method, as done for instance by Link et al. [2018].

As pointed out by Ngoepe et al. [2018] thrombosis models should be sophisticated enough to provide
precious clinical information with a reasonable computational cost. To tackle this challenge in the context
of deviced-associated thrombosis, a reduced model for thrombin generation triggered by contact activation
of factor XII is proposed. This model allows for the characterization of the patient thrombin formation
profile with a minimal reaction mechanisms. The reduced model was constructed based on previous re-
duction approaches [Wagenvoord et al., 2006] and by substituting the extrinsic pathway with the contact
activation system. In fact, the sensitivity results also guided the construction of the reduced model. For
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instance, the sensitivity analysis showed that formation of thrombin and meizothrombin by factor Va had an
important role by means of parameters k18, k19 and k20. In addition, inhibition activity of ATIII showed
to be relevant through parameters k26 and k24. Thus, these two mechanisms were incorporated with the
minimum number of reactions in the reduced model. Finally, in order to compute thrombin evolution, the
11 parameters involved in the model (kinetic rates and initial constants) have to be calibrated. A Bayesian
inference framework with a MCMC sampling method was used to infer the optimal parameters using the
concentration of thrombin in time as reference data from both the TGA and the detailed model of Chat-
terjee et al. [2010]. The set of parameters found by the Bayesian inference method could reproduce the
experimental TGA trend when the initial concentration of factor II was decreased to 50 and 15 % from its
physiological value. A supplemental set of parameter values was inferred using the detailed kinetic model
of Chatterjee et al. The set of parameters aligned well with the trend presented by Chatterjee’s model; this
set of parameters may be used in general purpose CFD computations in which the conditions of the case
are not the same as in our experimental configuration. Using such a reduced kinetic model in hemodynamic
computations lowers the computational cost of chemical species transport by almost a factor of seven.

The results contribute to improve the predicting capabilities of the model of Chatterjee et al. [2010]. To
the best of our knowledge, this is the first time that a minimal reaction mechanism triggered by the contact
activation system is proposed. The reduced model combined with proper boundary conditions [Méndez Ro-
jano et al., 2018] may be particularly useful in situations in which the coagulation reactions are triggered by
contact activation of factor XII.
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Sigüenza J, Pott D, Mendez S, Sonntag S, Kaufmann TAS, Steinseifer U, Nicoud F (2018) Fluid-structure
interaction of a pulsatile flow with an aortic valve model: A combined experimental and numerical study.
Int. J. Numer. Meth. Biomed. Eng.34(e2945):1–19

Sobol’ IM (2001) Global sensitivity indices for rather complex mathematical models can be efficiently com-
puted by Monte Carlo (or quasi-Monte Carlo) methods. these indices are used for estimating the influence
of individual variables or groups of variables on the model output. /mcs 55:271–280

Taylor JO, Meyer RS, Deutsch S, Manning KB (2016) Development of a computational model for macroscopic
predictions of device-induced thrombosis. Biomech. Model. Mechanobiol.15(6):1713–1731

Wagenvoord R, Hemker PW, Hemker HC (2006) The limits of simulation of the clotting system. J. Thromb.
Haemost.4:1331–1338

Wilson WM, Cruden NL (2013) Advances in coronary stent technology: current expectations and new
developments. Res. Rep. Clin. Cardio.4:85–96

Wu WT, Yang F, Wu J, Aubry N, Massoudi M, Antaki JF (2016) High fidelity computational simulation of
thrombus formation in Thoratec Heart Mate II continuous flow ventricular assist device. Sc. Rep.6:38025–
1–11, DOI 10.1038/srep38025

Xiu D (2010) Numerical Methods for Stochastic Computations. Princeton University Press

Yan Y, Xu LC, Vogler EA, Siedlecki CA (2018) 1 - Contact activation by the intrinsic pathway of blood
plasma coagulation. Woodhead Publishing

19



Yazdani A, Li H, Humphrey JD, Karniadakis GE (2017) A general shear-dependent model for thrombus
formation. PLoS Comp. Biol.13(1):e1005291

Yoganathan AP, He Z, Jones SC (2004) Fluid mechanics of heart valves. Ann. Rev. Biomed. Eng.6:331–62

Zarnitsina VI, Pokhilko AV, Ataullakhanov FI (1996) A mathematical model for the spatio-temporal dy-
namics of intrinsic pathway of blood coagulation. i. the model description. Thromb. Res.84(4):225–236

Zhu D (2007) Mathematical modeling of blood coagulation cascade: kinetics of intrinsic and extrinsic path-
ways in normal and deficient conditions. Blood. Coagul. Fibribolysis.18:637–646

Zmijanovic V, Mendez S, Moureau V, Nicoud F (2017) About the numerical robustness of biomedi-
cal benchmark cases: Interlaboratory FDA’s idealized medical device. Int. J. Numer. Meth. Biomed.
Eng.33(1):e02789:1–17

20


