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Abstract—Data Assimilation (DA) and Uncertainty quantifica-
tion (UQ) are extensively used in analysing and reducing error
propagation in high-dimensional spatial-temporal dynamics. Typ-
ical applications span from computational fluid dynamics (CFD)
to geoscience and climate systems. Recently, much effort has
been given in combining DA, UQ and machine learning (ML)
techniques. These research efforts seek to address some critical
challenges in high-dimensional dynamical systems, including but
not limited to dynamical system identification, reduced order
surrogate modelling, error covariance specification and model
error correction. A large number of developed techniques and
methodologies exhibit a broad applicability across numerous
domains, resulting in the necessity for a comprehensive guide.
This paper provides the first overview of the state-of-the-art
researches in this interdisciplinary field, covering a wide range
of applications. This review aims at ML scientists who attempt
to apply DA and UQ techniques to improve the accuracy and the
interpretability of their models, but also at DA and UQ experts
who intend to integrate cutting-edge ML approaches to their
systems. Therefore, this article has a special focus on how ML
methods can overcome the existing limits of DA and UQ, and
vice versa. Some exciting perspectives of this rapidly developing
research field are also discussed.
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I. INTRODUCTION

The rapid growth of Machine Learning (ML) has been
witnessed in a wide range of research fields, including com-
puter vision [1]], natural language processing [2] and AI for
science [3[]. In particular, literature shows that the application
of [MI algorithms, from conventional methods to deep neural
networks, is present in nearly all aspects of spatio-temporal
problems [4], [3], [6]. Adopting ML algorithms yields consid-
erable improvements in forecasting complex high-dimensional
dynamics. However, the black-box nature of ML algorithms
makes them to exhibit poor interpretability, lack of robustness,
weak reliability, and vulnerability to adversarial attacks and
noisy systems. On the other hand, Data Assimilation (DA) [7]
and Uncertainty quantification [8] are reference frame-
works that deal with model/data noises and error propagation
inside dynamical systems. Compared to [ML] they provide in-
terpretable and explicit solutions based on some mathematical
assumptions, such as linearity and Gaussianity [7], [9], [10].

As [11]] pointed out, substantial mathematical similarities
exist between [MI] and in particular, variational-type as-
similation methods [7]]. In fact, the latter also relies on gradient
descent techniques to minimise a cost function measuring the
difference between model outputs and prior estimation/obser-
vation. Several works have examined the connections between
the acquisition, interpretation, and use of data in [ML] and
Integrations of and have been introduced in [12]],
[L3], [14]. The link between probabilistic approaches and
differential equations is highlighted when the frameworks of
and [MI] are combined from a Bayesian perspective. This
equivalency, which demonstrates the parallels between the two
areas, is presented formally in [11], [15]. Here, they show
how to approximate Bayesian inverse methods (i.e., Variational
data assimilation (VarDA)) in and back-propagation in [MLJ)
can be utilised to combine the four-dimensional (4D-
Var) and Recurrent Neural Network fields. In [16],
and are considered already incorporated in a Weak
Constraint offering a somewhat different viewpoint.
As demonstrated in [17], [15], [18]], these approaches are
also particularly well adapted to systems using Gaussian pro-
cesses. These are data-driven algorithms capable of estimat-
ing model statistics and learning nonlinear, space-dependent,



cross-correlations in a unified manner. Specifically, for high-
dimensional systems, is often combined with Reduced-
Order Modelling (ROM)), such as classical Proper Orthogonal
Decomposition [19] and [MLlbased autoencoders [20]]
to reduce the computational cost. Both practical uses of these
fusion algorithms, such as air quality forecasting using data-
driven artificial intelligence [21l], [22] and more theoretical
ones, like spatiotemporal oscillations of the Partial Differential
Equation (PDE) [23] using numerically computed approxima-
tions of Koopman eigenfunctions and eigenvalues, have been
presented. Other methods, such as those in [12], [24], which
iteratively apply an Ensemble Kalman Filter (EnKE) and a
neural network to imitate hidden dynamics and forecast future
states, are more akin to the works reported in this paper. A
modular approach integrating neural network and [DAlhas been
presented in [14] which shows several methods to combine
neural network and to overcome limitations in applying
these fields to real-world data.

[MLI methods fail under their primary form in providing any
guarantees of convergence or quantifying the error/uncertainty
associated with their predictions, thus it is critical to provide
to predictions in order to anticipate and explain
model failure to generalise. Model is crucial for instance
to help choosing what data to learn from, or exploring an
agent’s environment efficiently. In reality, data collection can
be very expensive and time-consuming in dynamical system;
and in extreme cases, only sparse and discrete batches of noisy
data can be observed overtime. In these cases, for MT]
helps in learning from small amounts of labelled data. [UQ]
is also extensively used for quantifying error propagation in
dynamical systems [25] through Monte Carlo methods and
Polynomial Chaos [26]], [27]. Monte Carlo methods are known
for their broad applicability, and Polynomial Chaos is proven
to have significant advantages in terms of computational
efficiency and interpretability [25]. When dealing with noisy
dynamical systems, and can be naturally combined.
For example, [28] made use of polynomial chaos expansion
to model and reduce the sampling errors in A number
of papers [29], [30] applied Monte Carlo methods to estimate
the error covariance matrices, which played a pivotal role in
algorithms.

Growing research efforts were devoted to combining and
comparing and with [MI] under different contexts. The
number of published articles (including preprints on open-
access repositories) from 2012 to 2021 that involved the
concept of and [MI is illustrated in Figure A
sudden increase can be noticed, especially from 2015 when
Deep Learning (D) [31] started to become the reference
approach in many research areas. The applications of these
methods cover a large range of fields, including climate
science, fluid dynamics and image analysis. In this review, the
related researches are mainly classified into two categories:
using techniques and assisted by and UQ,
respectively. The former focuses on [MIL}tbased solutions to
the long-standing challenges of including the correction
of forward model errors and the error covariance specification.
The second category gives attention to how and [UQ] can
assist [MI in predicting high-dimensional dynamical systems.

Specifically we concentrate on the challenge of noisy partial
data and the use of real-time observations to progressively
adjust [MI] surrogate models.

Figure [2 illustrates conceptually the related technologies as
a function of problem dimension (x-axis) and noise level (y-
axis) for their usual use cases. Different challenges presented
in this review are also displayed where the colours indicate the
technologies involved. It is worth mentioning that the
plays a pivotal role in enabling the combination of [ML]and [DA]
methods, especially in real-world applications, by reducing the
computational cost.

This review aims to cover most of the cutting-edge articles
in the related research fields. This paper can thus serve as a
comprehensive guide for navigating these fast growing tech-
niques and methodologies. We stress that the objective of this
work is not to compare the performance of existing methods
since they were developed to address different problems. In
summary, we made the following contributions in this paper:

o To the best of the authors’ knowledge, this is the first
review that addresses the combination of and
for dynamical systems.

o This paper has a special focus on how [ML] methods can
contribute to the key challenges of and and vice
versa.

o This review includes a range of main applications in
and such as Numerical Weather Predic-
tion (NWP)), environmental modelling and Computational
Fluid Dynamics (CED).

e Some promising and insightful research perspectives and
challenges are discussed.

The rest of the paper is organized as follows. Section
introduces the background and preliminaries for
and [MI] applied to high-dimensional dynamical systems. In
Section and we describe how the cutting-edge MI]
techniques can be used to address the key challenges in
and and vice versa. Other approaches and perspectives
that combine [ML with [DA] or [UQ] are discussed in Section
We finish this review with a conclusion in Section [Vl

II. BACKGROUND AND PRELIMINARIES

In this section, we briefly summarise the foundation of
[DAl and [MI] with a particular attention given to the application
on high-dimensional dynamical systems.

A. Uncertainty and error quantification for complex and dy-
namical systems

In statistical terms, there are different types of uncertainties
[32], [33]], including

o Aleatoric uncertainty which originates in noisy input
data (gappy, noisy, discordant or multimodal), where
homoscedastic uncertainty denotes the variance that stays
constant for all input parameters;

e Heteroscedastic uncertainty represents the variance that
depends on the input parameters and can potentially be
predicted as a model output. In general, regardless of the
quality of a model or the amount of training data, this
uncertainty is irreducible;
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o Uncertainty in model parameters that best explain the
observed data, for instance a large number of models are
able to explain a given dataset, in which case we might
be uncertain which model parameters to choose to predict
with;

o Structural uncertainty, i.e., what model structure should
we use, how do we specify our model to interpolate and
extrapolate well.

The latter two can be grouped under model uncertainty
that are epistemic uncertainties. Epistemic uncertainties de-
scribe the fidelity of the model in its representation of the
data—barring aleatoric uncertainties. Typically in ML, epis-
temic uncertainties decrease as the training data size increases.
Combining aleatoric and epistemic uncertainties provides us
with the predictive uncertainty that is the confidence level of
the model accounting for noise it can explain and noise it
cannot.

Sensitivity analysis (SA) is the primary tool in UQ to analyse
error propagation in complex and dynamical systems through
understanding and distinguishing the effects of various un-
certainties on model output [34], [33], [36], [37]. SA can be
used to determine which input variables contribute most to
an output behavior, and which inputs are not influential, or
to check for certain interaction effects in the model. This can

be extremely useful when the model intrepretability is poor
or the explicit formulas of the governing equation is out of
reach, as in a majority of ML models. The SA process involves
calculating and analyzing sensitivity indices of input variables
relative to a given quantity of interest in the model output (e.g.,
its mean, its variance, a particular quantile, its maximum).
Considering the variance as an uncertainty metrics, sensitivity
indices of each uncertain input variable on the variance of the
model output allow for a better understanding of the model
behavior, in order to reduce the uncertainties in the output in
the most efficient manner. For example, identifying the most
influential inputs will reduce their uncertainties, and then the
model output uncertainty [38].

In [36], four settings have been defined for the needs of
SA in practice. First, the model exploration setting aims at
understanding the behavior of the model by investigating the
input-output relationship, e.g., via graphical tools. Second, the
factors fixing setting aims at reducing the number of uncertain
inputs by finding then fixing non-influential inputs. Third,
the factors prioritization setting aims at precisely quantifying
the effects of the most influential inputs. Last, the input
distribution robustness setting aims at analyzing the variations
in the quantity of interest with respect to uncertainty in inputs’
distributions.

Recently, it has been recognized (see, e.g., [39], [40]) a
wide analogy between SA and the topic of interpretability in
ML [41]. As in SA, four settings have been defined in [39]
for the needs of ML interpretability in practice: visualization
of the relation between the predicted output label and the
input features, identification of the most important features in
ML prediction, important measures of explanatory variables
and robustness of the decision boundary. can also be
extremely useful in models, especially in determining the
prior and posterior errors of states and observations, which
play an important role in [42]). In fact, as shown in the next
section, algorithms, particularly Kalman-based procedures,
are probabilistic approaches where the state of the system is a
Gaussian random variable. Thus, the state vector is defined at
each time step by a mean vector and a covariance matrix. This
of the assimilation results is important because it provides
information on : the observation sampling in both space and



time, the uncertainty correlation between variables, and the
confidence in the estimate of the state vector.

B. DA for dynamical systems

Data assimilation aims at predicting physical fields and esti-
mating model parameters [7], [43] by aggregating information
from different sources. Applying to dynamical systems
allows continuous corrections to model predictions while
accounting for model and observation errors/uncertainties.

A typical time dependent framework over a discrete
time window [0, ..., 7] involves variables and parameters as
listed below.

o states x;: the target field of estimation, which is assumed
unobservable in

o true states xi™°: theoretical values of x;

o background states x?: prior estimations of x'™¢, often
obtained via predictive models;

« observations y;: observable quantities, for example, from
sensors or satellites;

« transformation operators H;: functions that map the state
variables to the observations;

« transformation operators M;: functions that map the
dynamical system from x;_; to xy;

« prior errors €7, €/ : estimation and prediction errors asso-
ciated to x? and y; respectively;

o error covariances By, R;, Q;: auto-covariance matrices of
background, observation and model errors;

« analysis states x¢: output of models;

where y; exists only when the observation at time ¢ is avail-
able. In the rest of this paper, we denote xo.7 = {xq, ..., X7}
and yo.r = {yo,...,y7T} as a sequence of states and obser-
vations, respectively. We denote H;, M, the linearisation of
He, M.

Operational models are mainly twofold: Kalman filter-
based methods from estimation theory and variational
related to control theory. Both families of approaches can
be derived from Bayes’ theorem [44]. The analysis states x¢
obtained from could be viewed as a compromise between
x? and y;, where the weights are determined by B;, Q; and
R; In the state vector is Gaussian because the errors
terms €7, €/ in the state- and observation-space model are
often assumed to be additive, Gaussian, and centered [7]].
The background error represents the error propagation in the
dynamical model and the fact that the initial condition is not
necessarily well estimated [45]. The observation error repre-
sents the mismatch between the observation vector y; and the
state vector projected in the observation space. This mismatch
is mainly due to the error of representativity between the two
vectors [46] and instrumental errors. Those background and
observation errors are characterised by the covariance matrices
B; and Ry, respectively. They show error amplitudes, error
spatial correlations, and shared errors between variables.

a) Variational DA: Following [DAls statistical frame-
work [44]], we wish to directly apply Bayes’ rule [44] over
[0,T7], with batches of observations yo.r. We can focus on

the estimation of the conditional Probability Density Function
(PDB) of p(xo.7|yo.r). Applying Bayes’ rule, we obtain:
p(yo.r[Xo0.7)p(%0.7)

p(yo.r)
o p(yo.7 [X0.7)p(X0:7),

P(XO:T|YO;T) =
(1a)

where the evidence p(yo.r) is inessential here. We further as-
sume that the observation errors are Gaussian and uncorrelated
in time, with covariance matrices Ry.r, so that:

T
p(yorxor) = [ ply:lx:) (2a)

t=0

T
1
oC exp —52 HYt—Ht(Xt)H;;l
t=0

Moreover, the prior [PDH p(xo.7) is assumed Markovian,
i.e. the state x; conditional on the previous state x;_; does
not depend on all other previous past states:

(2b)

T

p(xor) =p(xo) [ [ pxt/%0:0-1) (3a)
t=1

" p(xo) [ [ pxelxi-1)- (3b)

t=1
We also assume Gaussian statistics for the model error and
the initial background which are uncorrelated in time, with
zero bias and covariance matrices Qq.7 and By, respectively.
Therefore, p(xq.7) is proportional to:

T

p(xo) exp [—; ; % — My (x¢-1) ||ét1] ; “)
with

ploxa) =exp |~ o~ xR ®)

Now, we can gather the likelihood and prior pieces to

obtain the cost function associated to the conditional

P(XO;T|YO:T)3
J (x0:7) = — In p(x0.7|yo:1)

T
1
=5 (lIx0 = X2+ D llye = Helox) [
t=0

T
+ Z ||Xt - Mt (thl) ||3Q:1)’ (63.)
t=1

up to constants that do not depend on the control variables
Xg.7. This is the cost/loss function of the weak-constraint
4D-Var [47)], with which several connections to [ML] can be
made. The cost/loss function can be minimised via gradient-
based nonlinear optimisation, hence finding a compromise
between the constraints of the observations, of the model, and
of the background, whose errors are weighted against their
statistics in the loss function. The argument of the minimum
is the analysis trajectory. Note that to be applicable to geofluid
models, this algorithm must be cycled in time, sequentially,
i.e. the dynamical numerical model must be applied to this
analysis.



Even though very powerful, these variational methods
require the tangent linear and adjoint models of M and
H* [48]] which hampered their widespread adoption, but might
now be boosted by the developments of differentiable models
from MLl More details are given in Section [[II-D| of this paper.

In variational well modelled error covariance matrices,
including B4, R; and Qq, are required since they are crucial
to spread information between observed and non-observed
variables within the analysis of the scheme. However, due
to the high-dimensionality, defining these covariances as a
sequence of operators can be intricate and computationally
demanding, as further discussed in Section [[II-C]

b) Kalman-filter-based DA: Processing the measure-
ments as they become available is what is done in a filter. As
opposed to estimating the full p(x0.7|yo.r) all at once,
filters sequentially estimate the marginal p(%¢|yo:t), for
all t € [0,T]. The process alternates an analysis step, based
on Bayes’ rule [49], where the conditional p(Xt|yo.r) is
updated using the latest observation y;, with a forecast step
which propagates this to the next observation batch [S0].

This Bayesian approach is very difficult already in problems
of moderate model dimension due to the cost of sampling
and evolving these [PDEs. Similar to the 4DVar! (4DVar!), we
assume that the uncertainties about observations, model, and
prior are all Gaussian distributed: the are now defined
by only means and covariance. By further assuming that the
dynamical and observational models are both linear, with time-
in-time and mutually uncorrelated errors, we get the Kalman
Filter (KE), which is the exact analytic solution to the Gaussian
estimation problem:

Forecast Step xg =M,;_1x¢ 4, (7a)
P, =M; P}_ M, +Q;. (b

Analysis step K, = PIH] (H*PIHT + R; '), (8a)
X = x| + Ki(yr — Hix}), (8b)

P = (I - K,H,)P.. (8¢)

Equations (7a)—(8c) sequentially estimate the state, x!, x?, and
error covariance, P!, PL. The matrix K; is the Kalman gain
containing the coefficients of the optimal linear combination
between the prior mean and the observations. The analysis
x%, has minimum error variance and is unbiased. The
is very powerful and, by solving for mean and covariance,
provides a time dependent estimate of the system’s state and
associated uncertainty. Its biggest limitations are the linear
assumptions and the computational cost for storing, evolving
and manipulating the matrices.

The extended Kalman filter (Extended Kalman Filter
(EKD), [5Q]) is a first-order expansion of the [KH for nonlinear
dynamics. It operates a linearisation of the nonlinear model
equations around the model’s solution. The nonlinear model
is used to propagate the state but the tangent linear model
for the error covariance evolution. The [EKH also assumes
Gaussian errors, but under the action of nonlinear dynamics,
even an initial Gaussian error may become non Gaussian.

The is therefore a good approximation as long as the
observations interval is shorter than the time scale of the error
growing modes [51]. Although the [EKH has been successful
in a number of pioneering applications, including for the
geosciences, see e.g. [52]], [S3], [54], it is also plagued by the
same huge computational requirements as the

A Monte Carlo approach is at the basis of a class of
algorithms referred to as [55]]. The use the [KH
statistical framework and mimics its analysis updates, but the
estimation and propagation of the errors is approximated by
a finite ensemble of model realisations. While the accuracy
of the [EnKEs is linked to the size of the computationally
affordable ensemble, the gave proofs of extraordinary
capabilities even in high-dimensional problems (O(10%)), by
using “only” as few as 100 members. The reasons behind this
success are multiple and concurrent. The ensemble members
are used to approximate a Gaussian distribution, as opposed
to the vastly more complex task of estimating a generic,
non parametric, PDEs. The latter is attempted by particle
filters [S6] that are in fact strongly affected by the curse of
dimensionality. The application of the [EnKEs to chaotic dy-
namics, such as for geofluids, is challenged by the instabilities
and the low predictability. Nevertheless, the benefit
from the chaotic systems’ tendency to confine error growths
within a smaller subspace than the full system’s dimension.
Tracking this relatively low-dimensional unstable subspace
with the finite ensemble is easier than affording the error
description in the fully dimensional space [57].

Finally and in practice, the success of the [EnKEs in high
dimensions is related to two ad-hoc fixes: inflation and lo-
calisation [1]]. Inflation consists in artificially increasing the
ensemble-based error covariance, to combat error underestima-
tion due to under sampling. Even more impactful, localisation
acts to boost the ensemble-based error covariance rank and
span, by reducing or even eliminating the small long distance
correlations that are unavoidably poorly estimated with a small
ensemble [S8]]. A recent surveys on from the mean field
perspective and for both discrete and continuous time can be
found in [59] while a review on state-of-the-art ensemble-
based approaches in general, including ensemble smoother and
ensemble variational methods, is given in [60].

C. ML with UQ

Supervised and self-supervised [ML] approaches are proven
to be very efficient in many real-world applications and have
still great potential for improving industrial means of produc-
tion as well as research and development aspects. However,
all these opportunities are still subject to methodological
challenges as, among others, the bias-variance trade-off, the
balance between the complexity of the underlying model to
learn and the available amount of training data, a possible high
dimensional input space, the presence of heterogeneous noise
in the observations [86]. One of these challenges concerns the
UQ associated to [ML predictions.

ML techniques can be categorized in different families [87],
[88], each of them having specific characteristics, for exam-
ple, theoretical properties, practical performance in complex



TABLE I: ML approaches considered in this review

Categories Methods Application/section References
Linear and polynomial  linear operator IPODI li ll equation identification (IV-C [61l, 1191, 1621

SINDY ROM (II-D), equation identification (IV-C| [63], [64], [65]
GLA li latent DA li parameter estimation ([II-C| [66], 1671, 168]
pe 00 (-] and [V-A) 27, (28]
Neighborhood Kriging equation identification [69]
KNN ROM (I1-D) 1671, [701, [711
Ensemble RF ROM (II-D), parameter estimation (III-C) 671, [[70]
DE UQ (IV-A) [72]
Deep learning CNN ROM (II-D), error specification (I-C), latent DA (IV-B) (731, [741, [73). [Z6]
RNN ROM ([I-D), error specification (II-C), latent DA (IV-B), equation identification 1770, (731, (78], 1791
BNN parameter estimation l| UQ 1801, [181]
GNN ROM (II'D) 182
Transformer ROM (II-D), equation identification (831, 841, [83]

problems related to the amount of data it requires, efficiency
in high dimension, stability, computational complexity and
interpretability capabilities. From the simplest to the most
complex one, we distinguish the following four grand families:

o Linear and polynomial models (into which the method
of polynomial chaos fits [89]). Confidence intervals as-
sociated to predictions performed by these models can be
obtained, as these models provide an analytical formula
for leave-one-out error as well as mathematical properties
of their regression coefficients [90];

e Neighborhood models (into which the kriging method
fits). The Gaussian process assumption behind the kriging
model allows to associate easily computable confidence
intervals associated to each prediction [89], [91];

« Ensemble models, especially those based on regression
trees (e.g., random forests, gradient boosting). Obtaining
confidence intervals for this kind of models is more diffi-
cult but two ways have been achieved: quantile regression
[92] and a specific subsampling procedure [93];

o Deep learning, also known as Deep Neural Networks
(DNN). In this category, different families of methods
have been proposed based on Bayesian frameworks, for
example, Bayesian Neural Network (BNN) [81] and
Monte-Carlo Dropout [94]]. The latter consists of
ensembles of Neural Network (NN) optimization iterates
or independently trained (e.g., deep ensembles:
DE [72]]). Thorough overviews of uncertainty quantifi-
cation in are provided by very recent review papers,
e.g., [95], [8], [96].

Finally, the method of conformal predictions [97] appears to
be a valuable way to provide confidence intervals for any type
of ML models.

In the particular case of predicting high-dimensional dynam-
ical systems, the state-of-the-art [ML] methods often consist of
[DLibased (see Section [[I-D). These reduced order mod-
els lie in a combination of different errors and uncertainties,
including observation/data uncertainties, compression errors
and predictive errors. The specification of these errors and
the correction of the [Dl}based [ROME are discussed in detail
in Section [IIT-C| and respectively. In this review, we

consider the combination of and [UQ] with a wide range of
[MTI] algorithms as shown in Table [l However, the main focus
is given to approaches since they are state-of-the-art in
predicting dynamical systems, especially in high-dimensional
spaces.

D. ML for predicting high-dimensional dynamical systems

ML algorithms for predicting high-dimensional dynamics
often rely on More precisely, data are first compressed
into a reduced latent space to decrease the computational cost.
Predictive models are then used to surrogate the dynamics in
the reduced space. Despite its efficiency, such a system will
introduce several terms of errors and uncertainties, including
compression and prediction errors. and can be em-
ployed to specify and correct these errors, as discussed in
detail in Section and In this section, we review
the state-of-the-art [MI] approaches for both and time-
series predictions.

1) Reduced-order-modelling: Reducing the dimension of
complex dynamical systems has been a long-standing re-
search problem [98]], [99]. Projection-based approaches, such
as and Proper Generalized Decomposition have
been extensively applied in a large range of engineering
problems [100], where the explicit transition from the full
physical space to a low dimensional latent space relies on
linear projection operators. In the past decade, much attention
has been given in enhancing the using [MI] methods,
in particular, [Dl}based autoencoders [77]. Autoencoder is
a specific type of self-supervised neural network that has
identical inputs and outputs. A typical autoencoder consists
of an encoder E which maps the input variables x; to the
reduced latent space and a decoder D which reconstructs the
full physical field x2'E from the latent representation z;, that
is,

z: = B(x;) and xPF = D(z). 9)
The encoder E' and the decoder D are trained jointly with
the objective to minimise the reconstruction loss, for instance,



quantified by the Mean Square Error (MSE]),

LYE = E(||x; — D o E(x¢)|%), (10)
where LMSE is the loss function. ||.||r and o denote the
Frobenius norm and the composition function, repectively. E
is the expectation operator.

Autoencoders (AEk) show great potential in capturing non-
linear patterns compared to projection-based methods such
as [POD| [101], [85], [102]. However, the geometry of the
latent space obtained by [AEk can be chaotic, and thus, less
interpretable [103]. Continuous efforts have been given in
combining autoencoders with traditional dimension re-
duction methods. Carlberg et al. [[104] used dimensionality
reduction methods comprising Principal Component Analysis
and [AEk to recover missing data. The works of [103]
and [106] used [AE to learn the Koopman invariant subspace
for Dynamic Mode Decomposition (DMD). A number of stud-
ies have also successfully applied [PODlbased [AEk for urban
air pollution [107]] and nuclear engineering [[108]], [68]]. These
methods benefit from both the accuracy of [DLI[AEk and the
interpretability of projection-based approaches. To tackle the
issue of chaotic latent space, Variational Autoencoder (VAE)
was proposed by [109], where a regularisation term is added
in the loss function. The latent variables were constrained by
Gaussian distributions through the Kullback-Leibler Diver-
gence to ensure the smoothness of the latent space
geometry [109]. The explicit latent space could naturally
improve the interpretability of [AEs. More recently, the work
of [110] introduced Vector Quantized Variational Autoen-
coders (VQ-VAE) which generate a discrete latent space
instead of a continuous one like standard [VAEK. Some recent
researches [111], [83]], [112] also attempted to enhance the
reconstruction performance by employing an attention-based
mechanism [113]]. For example, Rui et al [85] presented a
nonlinear non-intrusive using an [AE] and self-attention
method. Stacked [AEl is used to perform the nonlinear model
reduction and a self-attention mechanism is used to represent
the fluid dynamics.

Among different structures of [AEk, Convolutional Autoen-
coder (including convolutional [VAE), is by far the
most widespread architecture. However, it can be cumbersome
to apply for unstructured data, for instance, in
with irregular meshes. To address this bottleneck, Graph Neu-
ral Network (GNN) architectures [82]], [114] were proposed
and applied with success for modelling liquids and granular
materials. Moreover, [82] showed how graph-based [ML] can
also learn adaptive remeshing. There is increased attention
on using meshes for learned geometry and shape process-
ing, but despite the widespread use in classical simulators,
adaptive mesh representations have yet to see much use in
learnable prediction models. To deal with incomplete data, the
pioneering work of [115] introduced Masked autoencoders,
capable of reconstructing the full field using a limited number
of observable patches.

The development of different [AEk is illustrated in Figure
with a particular focus on the transitions between ’explicit’
and ’implicit’ latent spaces.

2) Predictive models: Forecasts produced by cost
only a fraction compared to high-dimensional model solution.
Non-intrusive were broadly used in predicting reduced
variables. Traditional approaches often relied on, for instance,
radial basis functions [116] or shallow machine learning tech-
niques, such as K-Nearest Neighbours and Random
Forest (RE) [67]. Recently, RNNk have been used to model
and predict temporal dependencies between inputs and outputs
of [ROM. and are used together in previous
studies, e.g. [24], [117], [118] where the surrogate forecast
systems can easily reproduce subsequent time-steps. Long
Short-Term Memory networks, originally described
in [[119], are used extensively to learn the underlying dynamics
in the reduced space [120], [121]]. LSTMl is a special variant
of that is stable and powerful enough to be able to
model long-range time dependencies [122] and overcomes the
vanishing gradient problem [123]]. Some recent works in ROM]
also focused on the state-of-the-art [MI] predictive models,
namely Transformer [83|] and adversarial predictions [124],
[22]. Transformers, originally developed in Natural Language
Processing (NLP), have been successfully implemented with
latent space representations of videos [83], or time-series
forecasting [125]]. However, the model efficiency and model
adaptation are hampered during the implementations of trans-
formers due to the computation and memory complexity of
the self-attention modules in the transformer [84]]. Some other
approaches aim to learn the underlying governing equations
with dynamical data as input. For example, Sparse Identi-
fication of Nonlinear Dynamics from Data [63],
[126] present a procedure that extracts sparse dynamic system
models from time series data. has been successful in
generating robust, high quality models for physical systems,
even with a[ROM]obtained via[PCAI[127], [128]], [129]] or deep
[AE] [130]]. Conversely, the accuracy of predictions can also be
increased by including specialised knowledge about the system
modelled in the form of loss terms [131], [[L32], or by physics-
informed feature normalisation [133]. In summary, various
[MLI predictive models were paired with [ROM] to release the
computational burden in high-dimensional system modelling.
However, when the predicted output is used as an input for
the prediction of the subsequent time sequence (known as
the ’rollout’ process), the results can detach quickly from
the underlying physical model solution when encountering
out-of-distribution data. This detachment is mainly due to
the error/uncertainty propagation and accumulation during
iterative predictions over rollouts [134]).

III. DATA ASSIMILATION USING MACHINE LEARNING
TECHNIQUES

In this section, we focus on how [MLI techniques are used
to address the key challenges of algorithms, including
model error correction (Section , parameter estimation
(Section [III-B)), error covariance specification (Section
and end-to-end learning of system (Section [III-D)).

A. ML to correct model errors in DA

As discussed at the end of Section [[I-D2| when predicting
complex dynamical systems, physics-based or data-driven nu-
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Fig. 3: Progression of [MI}based reduced-order-modelling

merical models are inevitably affected by errors. Typical model
error correction approaches consist of using a statistical model
(typically a neural network) to correct a physical, knowledge-
based model. In practice, this implies that we try to build
a hybrid physical/statistical model [135], [136], [137], [138],
[139], [140Q], [141], [142], [143]. A physical model is usually
defined by a set of differential equations. These equations are
discretised and implemented to form the model tendencies.
A numerical scheme is then used to integrate the tendencies
over a small time interval and several integration steps are
composed to iterate from one time to the next. From here,
there exist various ways to design the hybrid model, depending
on how the statistical correction is introduced [144]. The
easiest possibility is to include a single correction per model
integration:

X1 = My (x¢) + Fi (xe) (11)

where M, is the resolvent of the physical model from ¢ to t+1
and F; is the statistical correction, written in an additive form
for simplicity (there are of course other possibilities such as
multiplicative correction). This is called resolvent correction
because, in this case, the correction is added to the resolvent.
At the other end of the spectrum, the statistical correction can
be included in the model tendencies. The tendencies correction
is potentially more efficient because the errors can be corrected
before they manifest (i.e. before they are integrated) and
because the statistical correction benefits from the interaction
(via the integration scheme) with the physical model. However,
a tendency correction is by construction intrusive (even and
prominently at the level of physical and statistical models’
codes interdependence) and hence more difficult to implement

than a resolvent correction. This approach can be formalised
in the general form,

Xep1 = Fr (My (%¢) ,%¢) . (12)

It enables representation of non-additive error [142] or to
increase the model resolution from the original resolution of
the physical model to a higher dimension [[145]]. On the other
hand, the correction can no longer be directly related to the
analysis increment.

In a context, where observations are usually sparse
and noisy, the statistical correction can be trained using a
series of analyses, where the system state has first been
estimated from observations [12]]. In the case of the resolvent
correction, the contribution of the physical and statistical
models is independent. Therefore, it is possible to show that
the statistical model can predict the analysis increments [143],
[146]. This independence is convenient since the analysis
increments are usually products of the NWP]centres. However,
even though analysis increments can be seen as a proxy for
model errors, they are usually affected by other sources of
errors, e.g., approximations in the observation operator or in
the method itself [147]], [148]. An illustration is provided
in Figure 4, where a two-dimensional quasi-geostrophic model
is corrected using a neural network. The neural network is
trained using the analysis increments over one or two days.
The discrepancy between the neural network predictions and
the actual model error illustrates the difference between model
error and analysis increments.

More generally, this training process can be interpreted as
the first step of a coordinate descent [13], where steps
alternate with [MIJ steps to learn both the system state and
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the statistical correction from observations as illustrated in
Figure [5] By construction, this is an offline learning strategy,
because the [MI] step does not start until the entire analy-
sis trajectory is available. This means that one can benefit
from all the tools developed for deep learning while relying
on the infrastructure that could be in place and under
continuous development over the year (as in, e.g., weather
forecast centres). Online learning methods have been recently
developed as an alternative [149[], [144], [150], [151]. The
idea is to use augmented state techniques to estimate
at the same time the system state and the parameters of
the statistical correction. Compared to offline learning, online
learning approaches naturally fit a sequential context (where
observations become available over time) and allow model
error correction once the first observation is available. From
a machine learning perspective, this two-step approach can
also be put in a fully differentiable framework using auto-
differentiable to access the gradient of the itself [152].

B. ML and DA for parameter estimations

Parameters in dynamical systems are considered as addi-
tional variables, other than state vector, which determine the
dynamic characteristics [153]. Online parameter estimation
for high-dimensional dynamical systems has been a long-
standing challenge [154]. In geoscience, hybrid mechanistic-
empirical models are widely used for large-scale problems,
for instance, in climate [155] and wildfire [156]] forecasting.
The parameter estimation of these models often relies on case-
by-case tuning [[157] or posterior diagnosis/analysis [[L58] that
can be computationally difficult due to the complexity of the
predictive model. Much effort has been given in applying
especially variational assimilation, for parameter estimation
using real-time observations [159], [160]. In particular, an
augmented state approach that jointly estimates state and
parameters has been used [S0]. In augmented state approach,
the parameters are updated through cross-correlations with the
observed state. For this method to work well, there needs
to be a substantial correlation between observed values and
parameters as pointed out by [161]]. Two main difficulties are
associated with the estimation of model parameters [[162]: one
is the strong nonlinear coupling between the parameter and

model equations and the second is that the parameters are
usually between certain value range (for example parameters
are positive as a rule). Due to both these properties, a
method such as the [EnKH or variational methods that relies

, on Gaussian assumptions and uses only the first two statistical

moments in the analysis step, needs to be modified in order
to be able to deal with probability density functions poorly
approximated by the normal distribution. The work of [163],
[164], and [165] presented techniques in parameter estimation
that have been successfully applied in low-resolution non-
chaotic systems. In addition, [166], [167] adopted a new
algorithm of [168]] to the estimation of cloud microphysical
parameters that use higher than second order moments. [169]
compares several of the nonlinear algorithms for joint
state and parameter estimation and shows the benefits of
including higher order moments or physical constraints in
The work of [170] combines a data-driven simulator
for forecasting regional wildfire front position and an EnKF
for wind and biomass fuel parameters estimation. In this
framework, a surrogate model based on a Polynomial Chaos
approximation is iteratively adapted to capture the nonlin-
earities of the forward model and considerably improves the
EnKF efficiency. However, all these sample-based algorithms,
require stochastic models for parameters to ensure continuous
updates of parameters based on new data [[169]. As illustrated
in [161], in real world applications, the accuracy of the
parameter estimates is quite sensitive to the stochastic model
chosen. Thus, significant effort is required to properly tune the
stochastic model of the parameters.

On the other hand, since the parameters of numerical models
are not observed, [ML] is not an obvious method of choice
for the estimation of the parameters. However, in a hybrid
setting with has shown to bring several benefits to
this problem as well. [I71] proposed the use of RNNIto replace
the standard compartmental model in epidemic modelling for
COVID-19. Thanks to its efficiency, this approach can incorpo-
rate new data to adjust model parameters via in real-time.
[172] applied similar ideas to analyse cryptocurrency markets.
[173] implemented deep residual neural networks to surrogate
the assimilation process thus enhancing model forecasts. The
proposed approach managed to handle both parameter and
state estimation with sparse and noisy observations [173l].
[MLI can also be used to estimate parameters [80] and their
uncertainties as an alternative to the augmented state approach.
Although purely offline training produces a good, averaged
value of the parameters, we are often in a situation where
parameter values might differ due to various reasons like
season, or weather situation in systems. In this case,
combing [MIL] with is quite beneficial, since at the times
observations are assimilated, the online improvements to [MLI
model can be made. [80] goes beyond deterministic point
predictions and learns probabilistic neural networks: a deep
ensemble of point estimate neural network and BNNl After
training, these two types of neural networks are incorporated
within a system, where is used for state estimation
and [MI] for parameter estimation. [BNNk are additionally
trained online during the cycle using a realistic number of
forecast/analysis ensemble members allowing further improve-
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ments to a [ML] model. By including the parameter estimates
obtained from the BNNk in the [DAkycle, the results show
reduced state errors and increased ensemble spread compared
to the case without parameter estimation and with unknown
parameters. However, even though the [BNNk can accurately
estimate the model parameters and their uncertainties, the high
computational cost poses an obstacle. Therefore other methods
as random forests are currently considered for parameter
estimation problems [174].

Building efficient forward surrogate models is an alternative
solution to reduce the computational burden of inverse mod-
ellings [175], including parameter estimation [176]. The very
recent work of [67]] proposed the use of Generalised Latent
Assimilation (see [66]] or our Section [[V-B]) to integrate
real-time observations for model parameter adjustment that
can yield more accurate future predictions. Learning from a
high-fidelity mechanistic model, the authors first constructed
a and [MI}based surrogate for predicting wildfire
dynamics. The model coefficients related to the fire spread
rate are then consistently updated using real-time satellite
observations. The same technology has been applied to nuclear
reactor physics [68]] with spatially-sparse observations. By
construction, this approach can incorporate observations with
flexible length time windows where pure [ML] can get into
difficulties with unfixed input dimension.

C. Error specification in DA: traditional and ML methods

Typical methods are tuned by some statistical param-
eters, especially those associated with the error terms, i.e. €
the model error, and elg’ the observation error. Assuming that
those two error terms are Gaussians, the corresponding model
and observation error covariance matrices are noted Q; and
R (see Section [II-B). They play a crucial role on the quality
of the reconstruction by controlling the weight given to
the forecast and the observations in the algorithms. This
is illustrated in Figure 2 of [177].

Several methods have been proposed in the literature to
jointly estimate Q; (or alternatively the background covariance
B;) and Ry, they are summarised in [177]. All the methods
are based on the innovationdifference, noted dffb, between the
observation y; and the background projected in the observation
space H, (x}), i.e.,

) =y —He (xD) . (13)

EIE L)

analysis-" and “optimal correction” respectively.

When considering Gaussian errors ¢ and €/, the inno-
vation df_b is also Gaussian, and its covariance matrix is
HtBthT + R;. In order to jointly estimate Q; (or B;) and
R, innovation alone is not enough, and the authors proposed
to examine other innovation statistics (e.g., observation minus
analysis, noted d°~“) in the observation space: this is called
the Desroziers method [178]. Alternatively, several works
among [179]], based on Mehra theory [180], had a look at the
lag-innovation statistics, the difference between two consecu-
tive innovations. Both Desroziers and Mehra methods use two
different innovations to retrieve the two unknown covariances.
As an example, the Desroziers innovation statistics should
verify the following equations:

R, =E [dg—“ (dg—b)T} : (14)

H,B,H +R,=E [d;’*b (d;)*b)q . (15)

Many works based on the principle of maximum likelihood
approaches also use the innovation to find the most likely co-
variances QQ; and R; [[181]. In DA, those likelihood-based ap-
proaches use either the Bayesian or the frequentist framework.
In the Bayesian framework, prior distributions are proposed
for the shape parameters of the two covariances (typically,
noise levels and spatial correlation lengths). Then, two-stage
procedures are used to estimate the state of the system and
the posterior distribution of those shape parameters [182]. In
the frequentist framework, covariance matrices Q; and Ry
(or parametric versions of them) are tuned to maximise the
total likelihood of the state-space representation. This tuning
is often achieved by implementing Expectation-Maximisation
(EM) algorithms [183]. The latter consists of a two-stage
procedure, where the state of the system is estimated, and then
covariance parameters are updated on an iterative basis [184],
(185], [186], (1871, [188], [189].

Classical error covariance estimation algorithms (e.g., [190],
[L78]) often rely on posterior analysis, and require iterative
applications of [DAl This can be computationally difficult for
high-dimensional systems. Furthermore, careful attention must
be paid when making the initial guess of error covariances,
which may crucially impact the algorithm performance [191].
Continuous effort sought to enhance error covariance mod-
elling, in particular, with [ML] techniques. Covariance Estima-
tion and Learning through Likelihood Optimization



was proposed by Vega-Brown et al. [192] to provide a fast
prediction of the observation error covariance R, based on a
Bayesian non-parametric learning methods. achieved
similar results compared to empirically estimated covariances
using manually annotating sensor regimes. The authors have
also shown that the learned covariances can provide substan-
tial enhancement to state estimation accuracy during online
filtering. A Convolutional Neural Network (CNN)-based ap-
proach, named Deep Inference for Covariance (DICE), has
been developed to learn the measurement error distribution in a
supervised manner [74]. Relying on the Gaussian assumption,
was employed as the loss function to train R;. Thanks
to the capacity of in capturing local spatial patterns,
[DICE] considerably outperformed on both simulated
and real data.

In fact, R; is often considered time-invariant in a wide
range of applications [46]]. Therefore, observed values y;
at different time steps are jointly considered to predict R;.
Following this idea, the very recent work of [78] proposed
a[RNNlbased framework for observation matrix specification.
More precisely, synthetically generated observation sequences
are considered as [RNN| inputs while the corresponding R;
is the output target during the training process. In particular,
was used to build the model because of its strength in
dealing with long-term time dependencies. The workflow of
offline model training and online prediction is illustrated in
Figure [6] As an important advantage, this approach managed
to handle both non-parametric and parametric (e.g., with a pre-
selected covariance kernel) covariance modellings. The com-
parison of different error covariance specification approaches
is given in Table [ where the computational efficiency refers
to low online computational cost and the temporal dependency
signifies if the method can use time-varying data to estimate
error covariances.
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TABLE II: Comparison of covariance specification approaches

Training good computational temporal
Methods free interpretability efficiency dependency
EM [186] v v X v
Desroziers [178]] v v X X
CELLO [192] X X v X
DICE [74] X X v X
LSTM-based [78] X X v v

D. End-to-end learning of DA systems

Instead of using [MI] techniques to address difficulties in
algorithms (e.g., model error correction, parameter esti-
mation and error covariance specification), some recent works
focused on building end-to-end learning schemes for the whole
system. End-to-end learning [31] naturally arises as an
appealing feature of deep learning schemes to address a given
inverse problem from raw input data through the combination
of elementary neural blocks. The key property here is the
differentiability of the elementary blocks which leads to the
differentiability of the end-to-end architecture. As such, one
can train the latter at once using a supervised or partially-
supervised learning strategy. This end-to-end learning strategy
has been at the core of the breakthroughs of deep learning
in many application fields, including signal processing and
computer vision [31]. Over the last decade, the elementary
blocks or layers available to design neural architectures have
also greatly expanded from initial dense, convolution, pool-
ing, activation and recurrent layers [31] to more complex
blocks, including among others attention blocks [[113]], multi-
scale neural architectures [[193]], finite-difference and spectral
solvers [194], neural optimizer [[195], and physics-informed
neural networks [196].

This diversity of neural components provides the basis
to address through an end-to-end learning framework.
This may simply consist in training a state-of-the-art neural
architecture to map observation data to the targeted state
sequence or model parameters [197], [198]. Here, we focus
on neural approaches which take a closer look at [DAl schemes
to design DA-inspired neural schemes. Broadly speaking, as
sketched in Fig[7] this applies both to sequential schemes
and non-sequential variational ones:

o Sequential-DA-inspired neural schemes: in sequential
DA, two main operators naturally arise, a forecasting
operator to forecast or sample the state at the next time
step given the current state and an analysis operator
to update the state given new observation data (see
Section [[I-B] for details). From a deep learning point of
view, both operators naturally relate to RNNl As such,
one may explore state-of-the-art [RNN] such as
and Gated Recurrent Unit [31] as in [199], [79].
When introducing a latent representation z; (for example,
obtained from as shown in Section [[I-DT)) for the
physical state x; or its [PDEk, this leads to a trainable
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recursion of the following form at time step ¢:

My (28, 1)
Ann (Z{a Yt)
x| = Pwn(zf)

where My, Anvy and Pypy are neural networks and
h; is the internal state of recurrent networks, if any.
One may also explore physically-constrained parameter-
isations, typically neural Ordinary Differential Equation
(ODE)/PDE] schemes for the forecasting operator if the
underlying physics [200], [201], [194] are known and/or
explicit Kalman recursion rule under additional linear-
Gaussian hypothesis for the posterior and the observation
operator [202], [79]. Regarding the learning step, these
approaches may adapt classic stochastic optimisation
algorithms [31] with randomised re-initialisation steps of
the internal states of the recurrent blocks [199];

e 4DVar-DA-inspired neural schemes: from a neural per-
spective, variational combines a variational cost (see
Section and a gradient-based optimizer using an
adjoint method [48]. Assuming that both the observa-
tion and dynamical operators are implemented as neu-
ral operators, the automatic differentiation embedded in
deep learning schemes makes it convenient to apply a
gradient descent with respect to state sequence and/or
model parameters, with no need to explicitly code the
adjoint operators. Besides, trainable optimizers have also
emerged as computationally-efficient solvers for minimi-
sation problems [[195], [203]. The combination of these
two elements as proposed in 4DVarNet approach [204]]
arises as an appealing solution to learn unknown terms
in the variational formulation jointly to computationally-
efficient solvers for the[DAlproblem. It relies on the weak-
constrained 4DVar cost function J over a time window
[0, T] with state variables xo.7 and observations yo.r as
defined in Equation [6a] in Section The associated
trainable solver exploits the following update rule from
some initial condition XE)?)T3

XE)]?;:U = Xék% +R {ij (Xé’f%y YO:TH

Z{, ht

a —
m =

(16)

a7

where k stands for the iteration index, R a recurrent
neural network, typically a LSTM, and V4J for the
automatic differentiation of the cost function with respect
to state xg.r. We want to reiterate that the definition
of the cost function J depends on the initial back-
ground xg and the transformation operators Ho.7 (see
Equation [6a). Beyond these physics-informed parameter-
isations of the variational cost, especially using neural
differential schemes, one may also explore non-sequential
representations of the dynamics [204].

From a theoretical point of view, the learning stage for these
neural schemes relates to bi-level optimisation problems [205]],
for instance for 4DVar-inspired schemes given by:

arg_min L ({(xG)n, (Ro:7)n }, ) » such that,
Ho.T, Xy

Vn, (Xo.1)n = arg I){(I)I;lj (x0:75 (Yo:1)n) (18)

{(x54) 1, (X0:7)n } o 18 the training dataset (n is the sample
index) and £ the considered training loss. Here x{™4° denotes
the theoretical value of the states which are supposed to be
known during the training process. Optimal interpolation [206]]
solves such a bi-level formulation for a minimum-variance
criterion and a linear-Gaussian state-space. End-to-end
schemes then open new research avenues to explore optimal
schemes and reduce estimation biases for nonlinear and/or
non Gaussian systems as illustrated for partially-observed
nonlinear dynamics by [204]]. This also applies to the shift
from general-purpose pipelines to application-centric ones
optimized for specific observing systems, states and/or diag-
nosis variables. Beyond applications on toy examples, recent
demonstrations for the reconstruction of sea surface dynamics
from satellite-derived observations [207] support the relevance
of these schemes to advance the state-of-the-art for real
problems. A key challenge is their application to complex
spatial-temporal problems currently solved by operational
systems in climate simulation, operational oceanography
and weather forecast. In such contexts, we may emphasise
the great flexibility in terms of state definition and model pa-
rameterisation opened by the end-to-end learning framework,




including for instance augmented state [208], multimodal
formulation [207] and uncertainty representation [209]].

IV. MACHINE LEARNING ASSISTED BY DATA
ASSIMILATION AND UNCERTAINTY QUANTIFICATION

In this section, we discuss how and techniques
can be used to enhance [MI] models in dynamical systems
regarding both prediction accuracy and interpretability. This
consists of uncertainty analysis for approaches (Sec-
tion [[V-A)), latent methods for correcting [ML surrogate
models (Section [[V-B)), identification of governing equations
using (Section and forecasting partially observed
dynamical systems (Section [[V-D).

A. Uncertainty analysis for ML approaches

Different families of [UQ] methods in [ML] especially
have been proposed based on Bayesian frameworks, for exam-
ple,[BNN] [81]] and [MCDI [94]. The latter consists of ensembles
of NNl optimization iterates or independently trained NNk (e.g.,
deep ensembles: DE [72)).

In both[BNNland Deep Ensembles (DE) methods, epistemic
uncertainty is often estimated by looking at an ensemble of
trained models where the sampling approach from the set of
possible models varies from method to method. Similar to
the process of EnKF (see Section in the spread of
predictions obtained from different models is then used as an
estimate of epistemic uncertainty.

In particular, offers a probabilistic interpretation
of models by inferring distributions over the models’
weights. They place a prior distribution over [NN| weights,
which induces a distribution over a parametric set of
functions. thus offer robustness to over-fitting,
uncertainty estimates, and can learn from small datasets [81]].
The Bayesian framework quickly explained here after plays
an important role in the foundation of [BNN] and some of the
proposed methods.

Given a set of paired noisy observations S, = {a;, B; } ¥,
and a set A of user assumptions and preferences (e.g., [NNJ
architecture or likelihood function), the goal is to construct
a conditional distribution p(X|x,S,,.A) of the quantity of
interest X given an input vector x. For each input, it is assumed
that the response contains both a deterministic as well as some
additive aleatoric noise. We aim at identifying the parameters
w of the NNImapping function M, that fits the function inputs
x and outputs X with maximum likelihood,

X = M, (x) + e(x), (19)

where e(x) represents the sum of the aleatoric noises. In the
case of a dynamical system, Equation [I9] can be written as

Xt4+1 = Mt(Xt) + 6;(, (20)

following the notation of Section We then assume a
likelihood function p(X|x,w) with parameters to be inferred
from the available data. In order to do so, we construct a
model function X, (x) of the parameters that captures the
deterministic part of the response and assume a model the

distribution for the noise (e.g. multivariate factorized Gaussian
likelihood function [210]). To obtain the posterior distribution
for any new input x, we must marginalise over the model
parameters,

p(i|X, SO) = ]Ew|80 [p(f(|x,w)] 3 (21)

where p(w|S,) is obtained from Bayes’ formula and there-
fore requires the likelihood of the data to be evaluated.
Obtaining the posterior exactly is computationally and an-
alytically intractable. Indeed, characterizing uncertainty over
[NN] parameters is challenging due to the high-dimensionality
and potential complex dependencies of the weights. Moreover
the influence of the prior distribution is difficult to be un-
derstood. To address the this obstacle, approximate inference
methods [211]], [8] aim to approximate the posterior by another
distribution and/or obtaining samples from the posterior. M is
denoted as the sampling size. All methods obtain a set of
parameters samples {J; }3M:1 that maybe used to approximate
the integration via Monte Carlo (MC) estimation as,

M
PR[x,80) = > %y, (x)/M, (22)
j=1

which provides an approximate distribution of the total pre-
dictive uncertainty. Under Gaussian assumption of the model
likelihood, there exists simple close forms for the mean
and standard deviation of the posterior prediction. In this
case, the approximate total uncertainty standard deviation is
a combination of the aleatoric and the epistemic parts of the
total uncertainty, respectively.

However, in practice p(w|S,) may be approximated by vari-
ational parameters, i.e., by a parametrized function gy(w).
The aim is to approximate a distribution that is close to the
posterior distribution obtained by the model. As such, the KLD]
between those two distributions (i.e., K L(gg(w)||p(w|Ss)))
may be minimized with regard to 6. The minimisation
is also equivalent to maximising the evidence lower bound
(ELBO) [212] with respect to the variational parameters. This
procedure is also known as the variational inference (VI) [32].
VI is a technique which replaces the Bayesian modelling
marginalisation with optimisation (i.e., replace the calculation
of integrals with that of derivatives) which can considerably
reduce the computational cost.

The posterior inference may also be approximated by vari-
ous Monte Carlo (MC) based methods such as Markov-chain
Monte Carlo (MCMC) techniques, drawing [NN| parameters
samples from the posterior by using a Markov chain with
the distribution of the parameters given the data as its in-
variant( i.e., stationary distribution). In particular, Hamilto-
nian Monte Carlo (HMC) is a reference sampling algorithm
but is extremely computationally demanding [213], [214].
Stochastic gradient MCMC approaches based on Langevin
and Hamiltonian dynamics have been proposed to alleviate
the computational burden of MCMC algorithms thanks to
stochastic approximation to the gradients [215]], [216], [217].
It is important to emphasize that these approaches do not
rely on any prior assumptions about the form of the posterior
distribution.



For Deep Ensembles (DE) [72], the concept is very simple
and one needs only to retrain the same network many times
with different weights initialisations. The inherent randomness
then provides different samples of the trained network pa-
rameters, meaning identifying multiple minimums of the
parameter loss landscape (i.e., different Maximum a Posteriori
(MAP) estimates). If one optimizes the networks with a
loss, this provides only a measure of epistemic uncertainty. If
one optimizes the data log likelihood, it estimate both aleatoric
and epistemic uncertainties. Variants such as — Snapshots
Ensembles (SEn) obtain the set of multiple minimums without
incurring any additional cost as compared to standard training,
thanks to letting the algorithms to converge to M different
local optimums during a single optimization trajectory; or —
Stochastic Weight averaging-Gaussian (SWAG) extends SEn
by also fitting a Gaussian distribution to the aforementioned
local optimums [218]].

Recently, much attention has been given in addressing the
[MLI explainablity using techniques [219], [220], [221].
The latter can contribute directly to the counterfactual expla-
nations [222], for instance, under which condition the decision
has been made and with what degree of freedom [219].
Furthermore, can provide information about model noises,
which is crucial for algorithms when being applied to
dynamical systems (see Section for details).

B. ML and DA with ROM

In this section we present the algorithms and applications
which combine and (especially [MI}based ones) to
get benefits from both technologies.

On the one hand, due to the high-dimensionality and the
complexity of the transformation function, implementing
for high-dimensional systems can be computationally chal-
lenging. Classical solutions consist of dimensionality reduction
via projection-based such as (see Section [[I-DI].
is then performed in the reduced space. The optimal
choice of the reduced space dimension has also been exten-
sively investigated [223], [224], [225], [226]. Many recent
research efforts sought to address this challenge of efficiency
by performing with [MI}-based [AEk (see Section [[I-DT).
Such algorithms, known as Latent Assimilation ([CA), can
benefit from the efficiency of [MLI and the accuracy of
More precisely, [227] proposes to learn assimilated results
using in a reduced space to enhance future predictions.
Similar ideas can be found in [12]] which introduces an iterative
scheme is introduced. However, when applying this
algorithm, retraining of the neural networks is required when
new observations become available. In past two years, online
[CAl has raised significant research attention. For sparse and
unstructured data, domain decomposition techniques [228]] can
also be used to reduce the problem dimension, for example,
via community detection through a connection graph [229],
[230].

On the other hand, as discussed in Section [[I-DI] and [[T-D2}
despite its great efficiency, MLl surrogate models can introduce
prediction errors in a cumulative manner because of the itera-
tive forecasts [231]]. with can address this problem

by updating the surrogate prediction consistently using real-
time observations collected from local sensors or satellites.
As shown in Figure [8] this is an online iterative process that
can be used to update the starting point of the next time-
level forecast in the latent space, thus improving the accuracy
of long-term predictions. Considerable research efforts also
sought to adjust the latent error covariance which crucially
impacts the assimilation performance (see [177] and Section
[MI-C). Ensemble [LA| was introduced in [76] and [232] to
estimate the background matrix, while [73] employed posterior
covariance tuning in the latent space. The proposed online [LA]
methods are mainly split into two groups:
o LA° [233], [234] where observations in the full physical
space are used to correct/adjust the reduced-order models;
« LA? [73]], [233), [73]], [232] where the state variables and
the observations are compressed into a same latent space.

The latter can perform more efficient assimilation especially
for dense observation mappings, as demonstrated in wildfire
forecast [[73]], air pollution estimation [75] and fluid mechan-
ics [232]. However, encoding state and observation variables
into a same reduced space is challenging, especially with
highly nonlinear state-observation transformation mappings,
which exists in a majority of real-world problems. There-
fore, separate [AEl are often required for the states and the
observations, leading to heterogeneous latent spaces.
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Fig. 8: Workflow of online [LA] with surrogate modelling and different
encoding-decoding strategies

TABLE III: Comparison of Latent Assimilation approaches

Reduced Reduced nonlinear  Non-explicit

Methods . . :
state observation mapping mapping

RODDA [227] v X X X
LA [233], [234] v X X X
LA+ [75], 73], [232] v v X X
GLA [66] v v v X
LSDA [236] v v v X
DDA [237], [238] X X v v

To tackle this bottleneck, and Latent Space data
assimilation were proposed in the very recent works
of [66] and [236] which make use of local surrogate functions
(i.e., polynomial functions [66] and Multi layer percepton
(MLP) [236]) to connect multiple latent spaces. Afterward,
variational can then be performed by solving a local



optimisation problem using smooth surrogate functions as
shown in Figure However, the computation of the local
surrogate functions around the predicted latent variables must
be performed online, resulting in relatively high computational
cost. More importantly, considerable uncertainties can be
introduced when mapping the two latent spaces, especially
when the choice of the approximation range is inappropriate.
Recent research of [237] addresses the difficulty of complex
state-observation mapping by proposing a new scheme,
named Deep data assimilation (DDA, which trained jointly
an observation-domain encoder and a state-domain decoder. A
similar idea can be found in the work of [238]]. Applying such
method, the observation data can be directly transferred to the
state space. The characteristics of different [LAl approaches are
summarised in Table

C. ML for dynamical systems assisted by DA

Except for [MI] surrogate models that learn directly from the
state variables (see Section and [[V-B)), there are several
examples of data-driven models derived from observations
that show forecasting abilities [239]], [240]. Those models can
take various forms (e.g. neural networks) but all assume the
observations to be perfect and complete, i.e. very little noise
and a spatio-temporal complete coverage of the processes of
interest. Nevertheless, these conditions are almost never met in
reality and dynamical systems of natural processes are usually
observed noisily and sparsely. techniques, on the other
hand, can provide a direct methodological formulation that
supports the inference of dynamical systems. This formulation
can be obtained from a collection of observations that can be
irregular both in space and time, noisy, and may also miss
some of the degrees of freedom that constitute the underlying
dynamics. Following the notation defined in Section let
us consider the following state space model:

Xt = Mt(xt—L 62‘71)
Yy

= Ht (Xt, 6%’)
The prior errors € and €} are considered as random processes
accounting for the uncertainties in the dynamical and obser-
vation models.

In an identification scenario, neither the dynamical model
M nor the state variable x; is known. Instead, we are only
provided with observations y, that are related in some way to
the hidden states through the observation operator H;. From
this point of view, state-of-the-art identification approaches can
be discussed based on the nature of the elements of the state
space model (Equation (23)).

1) Noise-free, direct measurements of the state variables:
When provided with direct measurements of x; and assuming
that the model and observation noise € and €} are zero, the
problem may be regarded as the identification of the most
appropriate basis function that explains the temporal variability
of the observations.

One may distinguish data-driven approaches into two promi-
nent families. The first (traditional) category involves an
expansion of M, as a combination of nonlinear basis, where
polynomial representations are typical examples [241]. The

(23)

combination of such representations with sparse optimisation
techniques, as shown in framework (see Section[[I-D2),
recently opened new research avenues in the context of de-
riving interpretable dynamical models (see [63l], [242] and
Section [[I-D2)). The [SINDy| methodology has the advantage
of interpretability and fewer parameters compared to other
[MLI models, which significantly reduces the chances of over-
fitting. These models were successfully applied to a variety
of canonical problems in fluid dynamics [63]], [243], electro-
hydrodynamic [244] and magnetohydrodynamics [245]]. The
main drawback of these approaches remains is that they rely
on estimates of the derivatives of the time series. This reliance
hampers the direct application to real problems where data
can be noisy and irregular. allows to bypass some of
the issues in by providing estimates of state space
variables. The work of [64] applied the bootstrap technique
in an ensemble-SINDY modelling to address the challenge of
noises and uncertainties in observation data.

A second category adopts a [ML] point of view and states
the identification issue as a regression problem between
consecutive observations. Beyond non-parametric regression
models based on analog forecasting [246], recent state-of-
the-art research investigates several methodologies based on
different [MI] tools. For instance, reservoir computing ap-
proaches [247]], [248] were shown to be well-suited for learn-
ing dynamical systems from data [249], [250]. Furthermore,
the link between residual neural networks (ResNets) and
motivated a large body of work in deriving differential
equations that are parameterised by neural networks [251],
[252], [208]. These new techniques show great flexibility and
can be applied to a variety of problems. They can also build
from the extensive advances in neural networks and deep
learning to tackle challenging issues such as discontinuities in
the observations [253]. These methods, however, may suffer
from generalisation issues, which motivate the use of various
regularisation techniques, based on prior knowledge of the
dynamics, to promote generalisation and interpretability of
these data-driven models [196]], [254]], [255]], [256l, [257],
[258], [259], [260], [261], [262].

2) Noisy observations of the state variables: When the
observation operator H, relates to all the states x; of the
system through an irregular space-time sampling and the noise
processes €X and €} are not zero, the derivation of governing
equations typically passes through an inversion step. This
inversion means that one should estimate the state variables x;
from the observations in order to perform the identification.
To address this challenge we proposed to leverage on [DAl in
a similar fashion to what is described in Section for the
estimate of the model error and the construction of a hybrid
physics+ML model. Here however, we assume that the model
M, (see, for example, Equation @) is fully unknown. The
lack of a physical model, renders the first cycle of DA/ML very
critical: as no model is known at the first cycle, the analysis
provided by the [DAlcan be very far from the underlying “truth”
and many optimisation cycles may be required, or in the worst
case the procedure could fail to converge. To mitigate this, in
some cases, a purely data-driven interpolation (e.g., Kriging)
can be performed in place of the first step to produce




the first estimate of x(.7. Another option is to emulate the
dynamical system M; using analog forecasting methods, and
plug it into an ensemble DA technique [263]], [264]. In absence
of any original physical-based model, the data-driven model
can only reconstruct dynamics on variables of the system that
are observed, even though the problem can be circumvented
by using Takens’s delay embedding theorem [265], [49] as it
is detailed in Section . If an original model is available,
it has been shown that it was possible to correct the dynamics,
including non-observed variables [142]. At the end of the DA-
ML cycles, the analysis can be used as an initial condition and
the data-driven model as a forecast model.

The above approach has shown to improve the forecast
skill of small-dimensional dynamical systems [12] and to
be equivalent to an expectation maximisation method [135].
In [12], it is also shown that the data-driven model trained
on noisy and sparse data has a skill of the same order
of magnitude as a data-driven model trained on complete
and noiseless observations. In the cases where the dynam-
ical system is partially known, fewer cycles are
necessary [143]], [140]. Sensitivities studies using (see
Section [[V-A) showed that this approach was not very sensitive
to the density of observations, up to a certain point. This is
likely to be case specific to vary depending on the application.
It has also been shown that the approach is correcting the effect
of noisy observation, but the final result is still very sensitive
to the noise in the data, as confirmed by other studies [266].
Implicitly, all studies on a data-driven models trained on
reanalysis [267], [268] are doing one cycle of this method:
first to produce a reanalysis and then [ML] to train a data-
driven model. One obvious limitation of this approach is the
computing cost. Several iterations with successive application
of the and the training of the data-driven model are
necessary. Therefore, the question of finding the compromise
between the improvement of the model and the corresponding
cost is crucial. Another open question about the use of data-
driven or hybrid models in forecast experiments is whether
the improvement brought in forecast skill can help understand
the deficiency of the current physical-based model. In that
perspective, explainable Artificial Intelligence (Al tools [269],
[270], [271] are needed to build operational and trust-worthy
systems.

D. ML with DA for partially observed dynamical systems

In practice, high-dimensional dynamical systems are often
only partially observable [272], [273]. Let us consider the
same problem as Section with observations only related
to a subset of the state vector x;. Therefore, the derivation
of meaningful (Markovian) governing equations in the ob-
servation space is (as long as the governing equation of x
cannot be decoupled) not possible. This issue was discussed
in depth by [274] in the context of closure modelling of a
known mechanistic or empirical model. In their work, [274]
constructed a mathematical framework that unifies many of
the common approaches for blending mechanistic and [ML]
models. The authors studied both discrete and continuous
time models and discussed [ML] based closure models that

can be both memoryless (Markovian) and memory-dependent.
Their representations were also combined with methods
to mitigate noise.

When there is no prior knowledge about the dynamics,
a popular path is based on the phase-space reconstruction
methodology. In this framework, we seek at projecting the
observations into a higher dimensional space that forms an em-
bedding of the hidden state space variables x;. The temporal
evolution of the variables of the embedding is then determin-
istic and can, in theory, be used to define a model. The most
employed embedding methodology in signal processing is the
celebrated Takens delay embedding theorem [265]]. It shows
that by considering delayed observations, one can unfold a
phase space that can be topologically similar to the one of
the unseen state variables. Several identification techniques
have been used on such representations, including polynomial
representations [275], recurrent neural networks [276], support
vector regression [277], non-parametric models [278] and
reservoir computing [279]]. Delay embedding representations
were also combined with frameworks in [49] to infer
dynamical models from noisy and partial observations.

Interestingly, the idea of using delay embeddings of the
observations can also be found at the heart of recent advances
in the inference of latent spaces in state space models based
on deep learning architectures [280], [281], [252], [282].
In such methodologies, latent variables are inferred from a
posterior distribution given a sequence of observations. This
posterior distribution is parameterised by a neural network and
optimized using the evidence lower bound. These frameworks
have the advantage of bypassing classical assumptions used
in traditional algorithms such as the Gaussianity of the
noise, but suffer, similarly to all models defined based on delay
representations, from the problem of correctly parameterising
the embedding parameters.

The parameterisation of a delay embedding [283], [284]
is a complex task (especially when given high dimensional
observations) and the model-making is highly sensitive to this
parameterisation. To address these limitations, the Neural Em-
bedding of Dynamical Systems framework (NbedDyn) [285],
[286] proposed to solve the embedding problem jointly with
the optimisation of a dynamical model. Specifically, NbedDyn
defines a new latent state z; as follows:

ze' = [R(x)",y7 ] (24)

with y; the unobserved component of latent state z, and R
an invertible operator used to reduce the dimensionality of
the observations. The augmented latent space evolves in time
according to the following state space model:

{Zt = Me,t(zt—h €tz_1)

25
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where My, is the approximate dynamical operator of M,
and G is a projection matrix that satisfies R(x;) = Gz;.
The optimisation of the parameters of the model My, as
well as the reconstruction of y;, are carried out jointly using
DAl Several optimisation strategies can be defined, depending
on the form of the dynamical and observation model as well



as the uncertainties € and €. For instance, when consider-
ing noise-free observations, a 4D-var formulation was used
in [283], [286] to derive nonlinear dynamical models from
partial observations of the state space. In related works, a [KE-
based identification was proposed for linear dynamical and
observation models with Gaussian uncertainties [287], [288]].

In practice, when using phase space reconstruction tech-
niques, one should not forget about the assumptions that
this theory is built on. For any embedding to work, we are
assuming that the dynamical model in Equation (23)) exists and
can be represented by an ordinary differential equation [289].
For several realistic applications, this may not exist or
can have an extremely large dimension. In geosciences, for
instance, the dimension of a state space variable can reach
O(10) [7]. In these situations, reconstructing such high-
dimensional phase space becomes significantly more challeng-
ing. Reducing the dimension of the problem as demonstrated
in [2835), [286] can help making this problem tractable but
may lead to closure issues. In practice, the model returned
by any embedding technique can be complemented by an
appropriate closure. The form of this closure term can be
deterministic using, for example, the framework of [274] or
stochastic through an appropriate calibration of a noise forc-
ing. Dynamical system identification approaches introduced in
Section and are summarised in Table [[V] where the
partial observation stands for partial observations of the state
space and the computational efficiency refers to low online
computational cost.

V. OTHER APPROACHES, CHALLENGES & PERSPECTIVES

In this section, we briefly introduced some other approaches
and future works combining with that have not
been discussed in detail.

a) Forecasting Multi-scale dynamical systems: The ques-
tion of defining multi-scale representations of dynamical sys-
tems is an established practice in theory-guided modelling and
empirical representations of dynamical systems. In chemical
dynamics for instance, several types of reactions are described
by stiff differential equations [290]. In finances, stochastic
representations are a common tool for representing the impact
of unresolved parameters on large-scale quantities such as
stock prices [291]. In geosciences, The continuity of phenom-
ena across spatiotemporal scales motivated a large body of
work for the derivation of multi-scale models that can be both
deterministic [292] and stochastic [293]], [294], [295]]. From a
[MLI of view, defining multi-scale dynamical systems from data
has been investigated mainly in prototypical scenarios. The
work of [296] developed sampling strategies for the definition
of multi-scale models using state space observations and the
definition of closure models for approximating the impact of
small-scale variables in the resolution of models is by
today standards a common practice [297]], [298]], [299], [300].
Rethinking such [MLJ solutions in terms of real observations
may require considering carefully designed, schemes, in
order to deal with noise and irregularities in the observations.

b) Mode-switching dynamics: Beyond multi-scale vari-
ability, real-world dynamical systems are constantly prone to

switching between different dynamical modes. Making data-
driven representations aware of such issues may help us
understand and predict these tipping phenomena in complex
dynamical systems from data. From this viewpoint, recent
state-of-the-art works started investigating the possibility of
finding canonical bifurcations of dynamical systems from toy
examples [301]. Generalising such approaches to real data
is a challenging question that requires finding these critical
transitions and accounting for their dynamics and aftereffects
in real-time with

c) Learning state-observation mapping in data assimi-
lation: In operational the transformation operator H;
which maps the state variables to the observations y; can
be complex and highly nonlinear [302f, [303], leading to
difficulties in minimising the cost function (see Equation (6a)).
Furthermore, as pointed by [304]], [237] and our Section
the observations are often incomplete and only relate to a
subset of state variables. Recently, much effort [237]] has been
given to compute machine learned transformation operators
that can decrease the computational burden, and address the
missing information in the observation field. [305] applied
fully connected neural networks to surrogate the mapping from
brightness temperature to microwave radiometer observations.
The learned mapping function was then used as the trans-
formation operator in an [EnKH for Similar ideas can
be found in [306], [238], [66], [236l]. As mentioned in Sec-
tion [66], [236] compute the surrogate operator in some
reduced latent space can further enhance the computational
efficiency. On the other hand, [307]] aimed to learn directly
the inverse (i.e., observation-to-state) transformation operator
to speed-up the convergence of algorithms. However,
since the inverse mapping in is often not well-defined,
observations are still required during the assimilation process.
The idea of learning state-observation mapping is naturally
related to some cutting-edge [MIJ concepts, such as transfer
learning [308]] and domain adaption [309]. It opens promising
avenues in solving multi-domain and multi-physics problems.

VI. CONCLUSION

The combination of [ML] with and [UQ] techniques ad-
vanced the state-of-the-art of data-driven modelling in various
fields and applications. In this overview, we presented an (as
much as possible to our knowledge) exhaustive description
and discussion of state-of-the-art approaches that involve
(or and ML In particular, we insist on that these
hybrid models provide strengths in interpretability and noise
reduction. The development trends and future challenges of
this fast-growing field are also investigated. Significant space
for further breakthrough advances still exists, especially in
applying these approaches in operational contexts. From a
methodological perspective, future research efforts could con-
centrate on, in particular, the integration of [MI] and in
high dimensional, multimodal and multi-scale systems, such
as [NWP] and ocean dynamics [310]. We hope that this review
paper will benefit scientists working in this vibrant area by
providing guidance on the use of and in[ML] and vice
versa, as well as to prompt further developments.



TABLE IV: Comparison of governing equations identification approaches

good noisy & irregular partial computational
Methods interpretability observation observation efficiency
polynomial [241] v X X v
SINDY [63], [242) v X X v
ResNet-based [251], [252], [208]] X X X v
DA-ML cycle [-] X v X X
delay embedding [280], (281, [252], [282] X X v X
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